Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308479

RESUMO

The global population is aging rapidly, posing unprecedented challenges to health care systems. This study investigates the often-overlooked role of macrophages in microvascular dysfunction associated with aging. We use a three-dimensional in vitro hydrogel model to assess the effects of both age and metformin, an anti-aging therapeutic, on macrophage interactions with microvasculature. Metformin's broad cellular impact is a subject of significant interest, yet its precise mechanisms remain unclear. Our research reveals that metformin treatment enhances genetic pathways associated with macrophage-mediated support of angiogenesis, resulting in increased microvessel density. Of importance, monocyte chemoattractant protein-1 expression is upregulated with metformin treatment and positively correlated with microvascular volume, shedding light on a potential mechanism for metformin's promotion of macrophage support of vasculogenesis. This work not only uncovers metformin's impact on human macrophages but also supports its potential as an antiaging therapeutic, offering new avenues for combating age-related diseases.

2.
Cells Tissues Organs ; 212(1): 74-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35249009

RESUMO

As humans age, there is an increased risk for developing age-associated diseases. Many of these diseases, such as cardiovascular disease, involve dysfunction in the vasculature. Cardiovascular disease stems from endothelial cell dysfunction and reduction in vascularization. Macrophages, prominent innate immune cells involved in orchestrating inflammation and wound healing, have a significant influence on vascularization. While much recent work has investigated the crosstalk between endothelial cells and macrophages, it is still not well defined. The interactions between the cell types are even less understood in specific disease states such as advanced age. Understanding how age influences macrophage/endothelial cell interaction is essential for understanding cardiovascular disease development in the elderly. In the polyethylene glycol (PEG)-based hydrogel system, we model the effects of age on vascularization by encapsulating endothelial cells, pericytes, and human donor macrophages. We created a biomaterial model system in which macrophages, either from young (<35 years old) or old (>65 years old) donors, interact with the modeled vasculature, termed microvessels. Confocal image analysis of vessel density, vessel length, and branch points were used to quantify microvessel growth depending on the age of the macrophage donor. Alongside this, soluble factor secretion and gene expression were evaluated using ELISA and NanoString to showcase biological mechanisms based on the age of each donor. Endothelial cells cultured with macrophages from old donors have reduced microvessel density. There also is reduced soluble factor secretion by the macrophages from old donors, which likely influenced microvessel growth. Altogether, we establish our PEG-based hydrogel vascular model as a system to evaluate patient-specific cell function as well as proposed mechanisms for how age influences microvessels.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Humanos , Idoso , Adulto , Células Endoteliais/metabolismo , Materiais Biocompatíveis , Doenças Cardiovasculares/metabolismo , Macrófagos , Neovascularização Patológica/metabolismo , Hidrogéis/metabolismo
3.
Regen Eng Transl Med ; 8(4): 499-503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34778512

RESUMO

Purpose: The ancestral background of human cells may play a role in cells' behavior and response to therapeutic interventions in vitro. We investigate the prevalence of ancestry reporting in current biological research and suggest that increased reporting would be beneficial to the field. Methods: Articles published over a six-month period in ten different journals were reviewed for their use of human primary cells and immortalized cell lines, and were analyzed based on whether or not the ancestral or ethnic information of cell donors was ascertainable. Results: The vast majority of literature published in the journals and timeframe we investigated did not report on the ancestral or ethnic origins of the human cells used. Conclusion: There is currently a substantial lack of reporting on the ancestral background of human cells used for research. We suggest that increased ancestral reporting should be implemented in order to improve the development of precision medicine. Lay Summary: Many diseases affect patients of different ancestral backgrounds in a variety of ways. In this perspective article, we raise the concern that, since many scientists do not consider ancestry when designing their studies, their results may not apply to all patients. We use data to show that very few scientists report on the ancestry of the donors who contribute cells and tissues to their research. We suggest that broader reporting on donor ancestry would improve biomedical research and would help doctors to personalize treatments for their patients.Future work includes further increasing awareness of the importance of including ancestry as a variable in experimental design, as well as promoting increased reporting on ancestry in the research community. Supplementary Information: The online version contains supplementary material available at 10.1007/s40883-021-00237-8.

4.
Drug Deliv Transl Res ; 11(6): 2482-2495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33797034

RESUMO

The advancement of in vitro techniques enables a better understanding of biological processes and improves drug screening platforms. In vitro studies allow for enhanced observation of cell behavior, control over the mimicked microenvironment, and the ability to use human cells. In particular, advances in vascular microenvironment recapitulation are of interest given vasculature influence in cardiovascular vascular diseases and cancer. These investigate alterations in endothelial cell behavior and immune cell interactions with endothelial cells. Specific immune cells such as monocytes, macrophages, neutrophils, and T cells influence endothelial cell behavior by promoting or inhibiting vasculogenesis through cell-cell interaction or soluble signaling. Results from these studies showcase cell behavior in vascular diseases and in the context of tumor metastasis. In this review, we discuss examples of in vitro studies modeling immune cell-endothelial cell interactions to present methods and recent findings in the field. Schematic showcasing common methods of in vitro experimentation of endothelial-immune cell interactions, including interactions with flow, static culture, or in-direct contact.


Assuntos
Células Endoteliais , Neoplasias , Comunicação Celular , Humanos , Macrófagos , Monócitos , Neoplasias/patologia , Microambiente Tumoral
5.
NPJ Microgravity ; 7(1): 13, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790288

RESUMO

The effects of a microgravity environment on the myriad types of immune cells present within the human body have been assessed both by bench-scale simulation and suborbital methods, as well as in true spaceflight. Macrophages have garnered increased research interest in this context in recent years. Their functionality in both immune response and tissue remodeling makes them a unique cell to investigate in regards to gravisensitive effects as well as parameters of interest that could impact astronaut health. Here, we review and summarize the literature investigating the effects of microgravity on macrophages and monocytes regarding the microgravity environment simulation/generation methods, cell sources, experiment durations, and parameters of interest utilized within the field. We discuss reported findings on the impacts of microgravity on macrophage/monocyte structure, adhesion and migration, proliferation, genetic expression, cytokine secretion, and reactive oxygen species production, as well as polarization. Based on this body of data, we make recommendations to the field for careful consideration of experimental design to complement existing reports, as the multitude of disparate study methods previously published can make drawing direct comparisons difficult. However, the breadth of different testing methodologies can also lend itself to attempting to identify the most robust and consistent responses to microgravity across various testing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...