Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140569, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918533

RESUMO

2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Praguicidas/toxicidade , Praguicidas/análise , Água , Ácido 2,4-Diclorofenoxiacético/toxicidade
2.
Environ Pollut ; 299: 118894, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085654

RESUMO

Expansion of sugarcane crops may have contributed to the increased contamination of native habitats in Brazil. Several species of amphibians inhabit ponds formed in flooded farmlands, where pesticide concentrations are usually high. This study evaluated the ecotoxicological effects of the sugarcane pesticides fipronil and 2,4-D, as well as the fertilizer vinasse (isolated and mixed), on physiological responses of Leptodactylus fuscus and Lithobates catesbeianus tadpoles. In situ assays were conducted in mesocosms with concentrations based on the doses recommended by the manufacturer. Vinasse (1.3% dilution) caused 100% tadpoles' mortality immediately after its application. Fipronil and/or 2,4-D altered antioxidant and biotransformation responses, induced neurotoxicity and changed lipid contents in tadpoles. A multivariate approach indicated that the mixture of pesticides induced most of the sublethal effects in both tadpole species, in addition to the isolated fipronil in L. fuscus. Fipronil alone increased glucose-6-phosphate dehydrogenase (G6PDH) activity, decreased acetylcholinesterase (AChE) and total lipid contents, and altered some individual lipid classes (e.g., free fatty acids and acetone-mobile polar lipids) in L. fuscus. The interaction between fipronil and 2,4-D in this species were more evident for lipid contents, although enzymatic alterations in G6PDH, AChE and glutathione-S-transferase (GST) were also observed. In L. catesbeianus, the mixture of pesticides reduced triglycerides and total lipids, as well as increased GST and decreased AChE activities. The detoxifying enzyme carboxylesterase was reduced by 2,4-D (alone or in mixture) in both species. Isolated pesticides also modulated specific lipid classes, suggesting their disruptive action on energy metabolism of tadpoles. Our study showed that fipronil, 2,4-D, and vinasse, individually or mixed, can be harmful to amphibians during their larval phase, causing mortality or impairing their functional responses.


Assuntos
Acetilcolinesterase , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/toxicidade , Acetilcolinesterase/metabolismo , Animais , Larva , Pirazóis , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...