Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Lung Res ; 34(10): 663-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19085564

RESUMO

Mechanical forces are critical for normal fetal lung development. However, the signaling events that promote lung maturation are not fully understood. In this study, the authors analyzed the role of Rho family guanidine triphosphatases (GTPases) in isolated embryonic day 19 (E19) fetal type II epithelial cells exposed to 5% cyclic stretch. The results showed that mechanical strain stimulated RhoA within 5 minutes of initiation of force. Rac1 was also activated, but not Cdc42. After 6 hours of equibiaxial stretch, actin filaments were oriented parallel to the long axis of the cells. By 16 hours, actin fibers still maintained the same orientation, but their intensity decreased when compared to 6 hours. These findings temporally correlated with a decrease in RhoA stimulation. Using adenoviruses encoding dominant negative mutants of RhoA and Rac1, the authors observed that both GTPases are important for strain-induced stress fiber formation, cell alignment, and extracellular signal-regulated kinase (ERK) phosphorylation. However, whereas inhibition of Rho increased surfactant protein C (SP-C) mRNA expression (a marker of type II cell differentiation), suppression of Rac had no effects. These studies suggest that RhoA and Rac1 regulate actin remodeling and cell alignment in fetal type II cells exposed to mechanical stretch. RhoA is a negative regulator of stretch-induced type II cell maturation.


Assuntos
Actinas/metabolismo , Células Epiteliais/citologia , Pulmão/embriologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
2.
Pediatr Res ; 60(2): 118-24, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16864689

RESUMO

Mechanical forces are essential for normal fetal lung development. However, the cellular and molecular mechanisms regulating this process are still poorly defined. In this study, we used oligonucleotide microarrays to investigate gene expression in cultured embryonic d 19 rat fetal lung type II epithelial cells exposed to a level of mechanical strain similar to the developing lung. Significance Analysis of Microarrays (SAM) identified 92 genes differentially expressed by strain. Interestingly, several members of the solute carrier family of amino acid transporter (Slc7a1, Slc7a3, Slc6a9, and tumor-associated protein 1) genes involved in amino acid synthesis (Phgdh, Psat1, Psph, Cars, and Asns), as well as the amiloride-sensitive epithelial sodium channel gene (Scnn1a) were up-regulated by the application of force. These results were confirmed by quantitative real-time PCR (qRT-PCR). Thus, this study identifies genes induced by strain that may be important for amino acid signaling pathways and protein synthesis in fetal type II cells. In addition, these data suggest that mechanical forces may contribute to facilitate lung fluid reabsorption in preparation for birth. Taken together, the present investigation provides further insights into how mechanical forces may modulate fetal lung development.


Assuntos
Desenvolvimento Fetal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Aminoácidos/metabolismo , Animais , Transporte Biológico/genética , Membrana Celular , Células Epiteliais/metabolismo , Feto/metabolismo , Expressão Gênica , Pulmão/citologia , Pulmão/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Estresse Mecânico
3.
Am J Physiol Lung Cell Mol Physiol ; 291(4): L820-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16751225

RESUMO

The signaling pathways by which mechanical forces modulate fetal lung development remain largely unknown. In the present study, we tested the hypothesis that strain-induced fetal type II cell differentiation is mediated via the cAMP signaling pathway. Freshly isolated E19 fetal type II epithelial cells were cultured on collagen-coated silastic membranes and exposed to mechanical strain for varying intervals, to simulate mechanical forces during lung development. Unstretched samples were used as controls. Mechanical strain activated heterotrimeric G-protein alpha(s) subunit, cAMP, and the transcription factor cAMP response element binding protein (CREB). Incubation of E19 cells with the PKA inhibitor H-89 significantly decreased strain-induced CREB phosphorylation. Moreover, adenylate cyclase 5 and CREB genes were also mechanically induced. In contrast, components of the PKA-independent (Epac) pathway, including Rap-1 or B-Raf, were not phosphorylated by strain. The addition of forskolin or dibutyryl cAMP to unstretched E19 monolayers markedly upregulated expression of the type II cell differentiation marker surfactant protein C, whereas the Epac agonist 8-pCPT-2'-O-Me-cAMP had no effect. Furthermore, incubation of E19 cells with the PKA inhibitor Rp-2'-O-monobutyryladenosine 3',5'-cyclic monophosphorothioate or transient transfection with plasmid DNA containing a PKA inhibitor expression vector significantly decreased strain-induced surfactant protein C mRNA expression. In conclusion, these studies indicate that the cAMP-PKA-dependent signaling pathway is activated by force in fetal type II cells and participates in strain-induced fetal type II cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Pulmão/embriologia , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/agonistas , Proteína Quinase Tipo II Dependente de AMP Cíclico , Células Epiteliais/classificação , Células Epiteliais/citologia , Feto/citologia , Feto/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Membranas Intracelulares/metabolismo , Pulmão/citologia , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...