Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 7: 32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110025

RESUMO

BACKGROUND: Structure-activity relationship models have been used to gain insight into chemical and physical processes in biomedicine, toxicology, biotechnology, etc. for almost a century. They have been recognized as valuable tools in decision support workflows for qualitative and quantitative predictions. The main obstacle preventing broader adoption of quantitative structure-activity relationships [(Q)SARs] is that published models are still relatively difficult to discover, retrieve and redeploy in a modern computer-oriented environment. This publication describes a digital repository that makes in silico (Q)SAR-type descriptive and predictive models archivable, citable and usable in a novel way for most common research and applied science purposes. DESCRIPTION: The QSAR DataBank (QsarDB) repository aims to make the processes and outcomes of in silico modelling work transparent, reproducible and accessible. Briefly, the models are represented in the QsarDB data format and stored in a content-aware repository (a.k.a. smart repository). Content awareness has two dimensions. First, models are organized into collections and then into collection hierarchies based on their metadata. Second, the repository is not only an environment for browsing and downloading models (the QDB archive) but also offers integrated services, such as model analysis and visualization and prediction making. CONCLUSIONS: The QsarDB repository unlocks the potential of descriptive and predictive in silico (Q)SAR-type models by allowing new and different types of collaboration between model developers and model users. The key enabling factor is the representation of (Q)SAR models in the QsarDB data format, which makes it easy to preserve and share all relevant data, information and knowledge. Model developers can become more productive by effectively reusing prior art. Model users can make more confident decisions by relying on supporting information that is larger and more diverse than before. Furthermore, the smart repository automates most of the mundane work (e.g., collecting, systematizing, and reporting data), thereby reducing the time to decision.

2.
SAR QSAR Environ Res ; 25(12): 967-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482723

RESUMO

In environmental risk assessment, the bio-concentration factor (BCF) is a widely used parameter in the estimation of the bio-accumulation potential of chemicals. BCF data often have an uneven distribution of classes (bio-accumulative vs. non-bio-accumulative), which could severely bias the classification results towards the prevailing class. The present study focuses on the influence of uneven distribution of the classes in training phase of Random Forest (RF) classification models. Three different training set designs were used and descriptors selected to the models based on the occurrence frequency in RF trees and considering the mechanistic aspects they reflect. Models were compared and their classification performance was analysed, indicating good predictive characteristics (sensitivity = 0.90 and specificity = 0.83) for the balanced set; also imbalanced sets have their strengths in certain application scenarios. The confidence of classifications was assessed with a new schema for the applicability domain that makes use of the RF proximity matrix by analysing the similarity between the predicted compound and the training set of the model. All developed models were made available in the transparent, accessible and reproducible way in QsarDB repository (http://dx.doi.org/10.15152/QDB.116).


Assuntos
Algoritmos , Substâncias Perigosas/metabolismo , Modelos Químicos , Poluentes Químicos da Água/metabolismo , Substâncias Perigosas/química , Relação Quantitativa Estrutura-Atividade , Medição de Risco/métodos , Poluentes Químicos da Água/química
3.
SAR QSAR Environ Res ; 24(3): 175-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23410132

RESUMO

Quantitative structure-activity relationships (QSARs) are broadly classified as global or local, depending on their molecular constitution. Global models use large and diverse training sets covering a wide range of chemical space. Local models focus on smaller structurally or chemically similar subsets that are conventionally selected by human experts or alternatively using clustering analysis. The current study focuses on the comparative analysis of different clustering algorithms (expectation-maximization, K-means and hierarchical) for seven different descriptor sets as structural characteristics and two rule-based approaches to select subsets for designing local QSAR models. A total of 111 local QSAR models are developed for predicting bioconcentration factor. Predictions from local models were compared with corresponding predictions from the global model. The comparison of coefficients of determination (r(2)) and standard deviations for local models with similar subsets from the global model show improved prediction quality in 97% of cases. The descriptor content of derived QSARs is discussed and analyzed. Local QSAR models were further consolidated within the framework of consensus approach. All different consensus approaches increased performance over the global and local models. The consensus approach reduced the number of strongly deviating predictions by evening out prediction errors, which were produced by some local QSARs.


Assuntos
Análise por Conglomerados , Exposição Ambiental , Poluentes Ambientais/metabolismo , Compostos Inorgânicos/metabolismo , Compostos Orgânicos/metabolismo , Relação Quantitativa Estrutura-Atividade , Algoritmos , Animais , Simulação por Computador , Humanos
4.
SAR QSAR Environ Res ; 21(7-8): 711-29, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21120758

RESUMO

The in silico modelling of bio-concentration factor (BCF) is of considerable interest in environmental sciences, because it is an accepted indicator for the accumulation potential of chemicals in organisms. Numerous QSAR models have been developed for the BCF, and the majority utilize the octanol/water partition coefficient (log P) to account for the penetration characteristics of the chemicals. The present work used descriptors from a variety of software packages for the development of a multi-linear regression model to estimate BCF. The modelled data set of 473 diverse compounds covers a wide range of log BCF values. In the proposed QSAR model, most of the variation is described by the calculated solubility in water. Other contributing descriptors describe, for instance, hydrophobic surface area, hydrogen bonding and other electronic effects. The model was validated internally by using a variety of statistical approaches. Two external validations were also performed. For the former validation, a subset from the same data source was used. The 2nd external validation was based on an independent data set collected from different resources. All validations showed the consistency of the model. The applicability domain of the model was discussed and described and a thorough outlier analysis was performed.


Assuntos
Modelos Químicos , Relação Quantitativa Estrutura-Atividade , Poluentes da Água/química , Organismos Aquáticos/metabolismo , Simulação por Computador , Modelos Lineares , Solubilidade , Poluentes da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...