Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 491: 358-366, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056445

RESUMO

In this work we demonstrated the potential of the He+5% H2+1% N2 plasma jet treatment for the synthesis of surfactant-free silver nanoparticles (Ag NPs) with narrow size distribution. The obtained colloidal solutions of electrostatically stabilized Ag NPs do not show any agglomeration for several months. Apart from an atomic thin oxide layer and the relatively weakly bound OH- ions, the surface of Ag NPs can be considered as stabilizer-free. The surface charge (characterized by the zeta potential) of Ag NPs in solution was measured by electrophoretic light scattering technique. Plasmonic band position and width in the UV/VIS extinction spectra was utilized for the assessment of Ag NPs size distribution. Highly concentrated Ag NPs were uniformly deposited on the surface of the glassy carbon (GC) electrodes by vacuum-drying technique. The deposition process was monitored with a digital camera attached to a microscope. The assemblies of Ag NPs on the electrode surface were characterized by scanning electron microscopy. The Ag NP/GC catalysts were electrochemically tested in alkaline solution using the rotating disk electrode method. The Ag NP/GC electrodes exhibited high electrocatalytic activity toward the oxygen reduction reaction (ORR) in 0.1M KOH solution, indicating their potential applicability as cathode materials for alkaline fuel cells.

2.
Nanoscale Res Lett ; 11(1): 197, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27075339

RESUMO

An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

3.
Nanoscale Res Lett ; 10: 97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852393

RESUMO

Spectral, angular, and temporal distributions of fluorescence as well as specular reflection were investigated for silica-based artificial opals. Periodic arrangement of nanosized silica globules in the opal causes a specific dip in the defect-related fluorescence spectra and a peak in the reflectance spectrum. The spectral position of the dip coincides with the photonic stop band. The latter is dependent on the size of silica globules and the angle of observation. The spectral shape and intensity of defect-related fluorescence can be controlled by variation of detection angle. Fluorescence intensity increases up to two times at the edges of the spectral dip. Partial photobleaching of fluorescence was observed. Photonic origin of the observed effects is discussed.

4.
Phys Chem Chem Phys ; 16(48): 26806-15, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25373476

RESUMO

Tetragonal xenotime-type yttrium orthophosphate (YPO4) Nd(3+) doped nanoparticles suitable for biomedical applications were prepared by microwave-hydrothermal treatment. We applied the energy transfer probing based on the analysis of kinetics of impurity quenching to determine the presence and spatial position of -OH fluorescence quenching acceptors in the impurity-containing nanoparticles. We show that the impurity quenching kinetics of the 0.1 at% Nd(3+) doped YPO4 nanoparticles is a two stage (ordered and disordered) static kinetics, determined by a direct energy transfer to the -OH acceptors. Analyzing the ordered stage, we assume that the origin of the -OH groups is the protonation of the phosphate groups, while analyzing the disordered stage, we assume the presence of water molecules in the mesopores. We determine the dimension of the space of the -OH acceptors as d = 3 and quantify their absolute concentration using the disordered Förster stage of kinetics. We use the late stage of kinetics of fluorescence hopping (CDD ≫ CDA) quenching (the fluctuation asymptotics) at 1 at% Nd(3+) concentration as an energy transfer probe to quantify the relative concentration of -OH molecular groups compared to an optically active rare-earth dopant in the volume of NPs, when energy migration over Nd(3+) donors to the -OH acceptors accelerates fluorescence quenching. In doing so we use just one parameter α = γ(A)/γ(D) = n(A)√[C(DA)]/n(D)√[C(DD)], defined by the relation of concentration of the -OH acceptors to the concentration of an optically active dopant. The higher is the α, the higher is the relative concentration of -OH acceptors in the volume of nanoparticles. We find α = 2.95 for the 1 at% Nd(3+):YPO4 NPs that, according to the equation for α, and the results obtained for the values of the microparameters CDD(Nd-Nd) = 24.6 nm(6) ms(-1) and CDA(Nd-OH) = 0.6 nm(6) ms(-1), suggests twenty times higher concentration for acceptors other than donors. As the main result we have established that the majority of -OH acceptors is located not on the surface of the Nd(3+):YPO4 nanoparticles, as many researchers assumed, but in their volume, and can be either associated with crystal structure defects or located in the mesopores.


Assuntos
Nanopartículas/química , Neodímio/química , Fosfatos/química , Ítrio/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula
5.
Nanoscale Res Lett ; 9(1): 143, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666921

RESUMO

Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. PACS: 78; 78.67.-n; 78.67.Bf.

6.
Nat Nanotechnol ; 9(1): 54-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24317283

RESUMO

Doping of carbon nanoparticles with impurity atoms is central to their application. However, doping has proven elusive for very small carbon nanoparticles because of their limited availability and a lack of fundamental understanding of impurity stability in such nanostructures. Here, we show that isolated diamond nanoparticles as small as 1.6 nm, comprising only ∼400 carbon atoms, are capable of housing stable photoluminescent colour centres, namely the silicon vacancy (SiV). Surprisingly, fluorescence from SiVs is stable over time, and few or only single colour centres are found per nanocrystal. We also observe size-dependent SiV emission supported by quantum-chemical simulation of SiV energy levels in small nanodiamonds. Our work opens the way to investigating the physics and chemistry of molecular-sized cubic carbon clusters and promises the application of ultrasmall non-perturbative fluorescent nanoparticles as markers in microscopy and sensing.

7.
Beilstein J Nanotechnol ; 5: 2398-402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551068

RESUMO

Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current-voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5-10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm(2)) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.

8.
Nanoscale Res Lett ; 9(1): 2469, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26088996

RESUMO

The chemical spray pyrolysis method was used to deposit CuInS2 (CIS) thin films and Au nanoparticles (NPs) in two configurations: glass/Au-NP layer covered with CuInS2 film (Au-NP/CIS) and glass/CuInS2 films covered with Au-NP layer (CIS/Au-NP). According to X-ray diffraction (XRD), the spray of 2 mM HAuCl4 aqueous solution with a volume of 2.5 to 15 ml onto a glass substrate at 340°C results in metallic Au nanoparticles with a similar mean crystallite size in the range of 30 - 38 nm. The mean crystallite sizes remain in the range of 15 - 20 nm when grown onto a CIS film. The prepared films show plasmonic light absorption with increasing intensity in the spectral range of 500- 800 nm when increasing the volume of HAuCl4 solution sprayed. When compared to bare CIS on glass, the absorptance was increased ca. 4.5 times in the case of glass/Au-NP/CIS and ca. 3 times in the case of glass/CIS/Au-NP configuration. The glass/Au-NP/CIS configuration had an advantage since Au-NP could be embedded without chemically damaging the CIS.

9.
Small ; 6(5): 687-94, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20108229

RESUMO

An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.


Assuntos
Luminescência , Nanoestruturas/química , Nitrogênio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão e Varredura , Nanoestruturas/ultraestrutura , Nanotecnologia , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...