Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(8): 4131-4141, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034096

RESUMO

Rhodopsins are the most abundant light-harvesting proteins. A new family of rhodopsins, heliorhodopsins (HeRs), has recently been discovered. Unlike in the known rhodopsins, in HeRs the N termini face the cytoplasm. The function of HeRs remains unknown. We present the structures of the bacterial HeR-48C12 in two states at the resolution of 1.5 Å, which highlight its remarkable difference from all known rhodopsins. The interior of HeR's extracellular part is completely hydrophobic, while the cytoplasmic part comprises a cavity (Schiff base cavity [SBC]) surrounded by charged amino acids and containing a cluster of water molecules, presumably being a primary proton acceptor from the Schiff base. At acidic pH, a planar triangular molecule (acetate) is present in the SBC. Structure-based bioinformatic analysis identified 10 subfamilies of HeRs, suggesting their diverse biological functions. The structures and available data suggest an enzymatic activity of HeR-48C12 subfamily and their possible involvement in fundamental redox biological processes.


Assuntos
Biologia Computacional , Rodopsinas Microbianas/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fotólise , Conformação Proteica
2.
Biochemistry (Mosc) ; 84(11): 1390-1402, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760925

RESUMO

Terminal oxidases of aerobic respiratory chains catalyze the transfer of electrons from the respiratory substrate, cytochrome c or quinol, to O2 with the formation of two H2O molecules. There are two known families of these membrane oxidoreductases: heme-copper oxidase superfamily and bd-type oxidase family (cytochromes bd) found in prokaryotes only. The redox reaction catalyzed by these enzymes is coupled to the generation of proton motive force used by the cell to synthesize ATP and to perform other useful work. Due to the presence of the proton pump, heme-copper oxidases create the membrane potential with a greater energy efficiency than cytochromes bd. The latter, however, play an important physiological role that enables bacteria, including pathogenic ones, to survive and reproduce under adverse environmental conditions. This review discusses the features of organization and molecular mechanisms of functioning of terminal oxidases from these two families in the light of recent experimental data.


Assuntos
Cobre/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Heme/química , Biocatálise , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Escherichia coli/metabolismo , Geobacillus/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxirredução
3.
Biochemistry (Mosc) ; 82(11): 1354-1366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29223162

RESUMO

Recombination of the isolated, fully reduced bd-type quinol oxidase from Escherichia coli with carbon monoxide was studied by pulsed absorption spectrophotometry with microsecond time resolution. Analysis of the kinetic phases of recombination was carried out using the global analysis of multiwavelength kinetic data ("Global fitting"). It was found that the unresolved photodissociation of CO is followed by a stepwise (with four phases) recombination with characteristic times (τ) of about 20 µs, 250 µs, 1.1 ms, and 24 ms. The 20-µs phase most likely reflects bimolecular recombination of CO with heme d. Two subsequent kinetic transitions, with τ ~ 250 µs and 1.1 ms, were resolved for the first time. It is assumed that the 250-µs phase is heterogeneous and includes two different processes: recombination of CO with ~7% of heme b595 and transition of heme d from a pentacoordinate to a transient hexacoordinate state in this enzyme population. The 24-ms transition probably reflects a return of heme d to the pentacoordinate state in the same protein fraction. The 1.1-ms phase can be explained by recombination of CO with ~15% of heme b558. Possible models of interaction of CO with different heme centers are discussed.


Assuntos
Monóxido de Carbono/química , Escherichia coli/química , Heme/química , Cinética , Oxirredutases/química , Proteínas de Escherichia coli , Modelos Químicos , Análise Espectral
4.
Biochemistry (Mosc) ; 80(5): 565-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26071774

RESUMO

Cytochrome bd is a terminal quinol oxidase of the bacterial respiratory chain. This tri-heme integral membrane protein generates a proton motive force at lower efficiency than heme-copper oxidases. This notwithstanding, under unfavorable growth conditions bacteria often use cytochrome bd in place of heme-copper enzymes as the main terminal oxidase. This is the case for several pathogenic and opportunistic bacteria during host colonization. This review summarizes recent data on the contribution of cytochrome bd to bacterial resistance to hydrogen peroxide, nitric oxide, and peroxynitrite, harmful species produced by the host as part of the immune response to microbial infections. Growing evidence supports the hypothesis that bd-type oxidases contribute to bacterial virulence by promoting microbial survival under oxidative and nitrosative stress conditions. For these reasons, cytochrome bd represents a protein target for the development of next-generation antimicrobials.


Assuntos
Anti-Infecciosos/uso terapêutico , Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Sistemas de Liberação de Medicamentos , Oxirredutases , Animais , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Infecções Bacterianas/imunologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Humanos , Oxirredutases/antagonistas & inibidores , Oxirredutases/imunologia , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
5.
Eur Biophys J ; 35(8): 647-54, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16708211

RESUMO

An electrometrical technique was used to investigate proton-coupled electron transfer between the primary plastoquinone acceptor Q (A) (-) and the oxidized non-heme iron Fe(3+) on the acceptor side of photosystem II core particles incorporated into phospholipid vesicles. The sign of the transmembrane electric potential difference Deltapsi (negative charging of the proteoliposome interior) indicates that the iron-quinone complex faces the interior surface of the proteoliposome membrane. Preoxidation of the non-heme iron was achieved by addition of potassium ferricyanide entrapped into proteoliposomes. Besides the fast unresolvable kinetic phase (tau approximately 0.1 micro s) of Deltapsi generation related to electron transfer between the redox-active tyrosine Y(Z) and Q(A), an additional phase in the submillisecond time domain (tau approximately 0.1 ms at 23 degrees C, pH 7.0) and relative amplitude approximately 20% of the amplitude of the fast phase was observed under exposure to the first flash. This phase was absent under the second laser flash, as well as upon the first flash in the presence of DCMU, an inhibitor of electron transfer between Q(A) and the secondary quinone Q(B). The rate of the additional electrogenic phase is decreased by about one-half in the presence of D(2)O and is reduced with the temperature decrease. On the basis of the above observations we suggest that the submillisecond electrogenic reaction induced by the first flash is due to the vectorial transfer of a proton from external aqueous phase to an amino acid residue(s) in the vicinity of the non-heme iron. The possible role of the non-heme iron in cyclic electron transfer in photosystem II complex is discussed.


Assuntos
Ferro/química , Complexo de Proteína do Fotossistema II/química , Plastoquinona/química , Proteolipídeos/química , Cátions , Transporte de Elétrons , Lipossomos , Potenciais da Membrana , Fosfolipídeos/química , Spinacia oleracea
6.
Biochemistry (Mosc) ; 70(2): 128-36, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15807649

RESUMO

Zinc ions are shown to be an efficient inhibitor of mitochondrial cytochrome c oxidase activity, both in the solubilized and the liposome-reconstituted enzyme. The effect of zinc is biphasic. First there occurs rapid interaction of zinc with the enzyme at a site exposed to the aqueous phase corresponding to the mitochondrial matrix. This interaction is fully reversed by EDTA and results in a partial inhibition of the enzyme activity (50-90%, depending on preparation) with an effective K(i) of approximately 10 microM. The rapid effect of zinc is observed with the solubilized enzyme, it vanishes upon incorporation of cytochrome oxidase in liposomes, and it re-appears when proteoliposomes are supplied with alamethicin that makes the membrane permeable to low molecular weight substances. Zinc presumably blocks the entrance of the D-protonic channel opening into the inner aqueous phase. Second, zinc interacts slowly (tens of minutes, hours) with a site of cytochrome oxidase accessible from the outer aqueous phase bringing about complete inhibition of the enzymatic activity. The slow phase is characterized by high affinity of the inhibitor for the enzyme: full inhibition can be achieved upon incubation of the solubilized oxidase for 24 h with zinc concentration as low as 2 microM. The rate of zinc inhibitory action in the slow phase is proportional to Zn(2+) concentration. The slow interaction of zinc with the outer surface of liposome-reconstituted cytochrome oxidase is observed only with the enzyme turning over or in the presence of weak reductants, whereas incubation of zinc with the fully oxidized proteoliposomes does not induce the inhibition. It is shown that zinc ions added to cytochrome oxidase proteoliposomes from the outside inhibit specifically the slow electrogenic phase of proton transfer, coupled to a transition of cytochrome oxidase from the oxo-ferryl to the oxidized state (the F --> O step corresponding to transfer of the 4th electron in the catalytic cycle).


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Zinco/farmacologia , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Relação Estrutura-Atividade , Fatores de Tempo
7.
J Biol Chem ; 274(46): 32810-7, 1999 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-10551842

RESUMO

The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.


Assuntos
Bacillus subtilis/enzimologia , Citocromos/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Escherichia coli , Bacillus subtilis/genética , Monóxido de Carbono/farmacologia , Respiração Celular , Grupo dos Citocromos b , Citocromos/química , Citocromos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Inibidores Enzimáticos/farmacologia , Genes Bacterianos , Glucose/farmacologia , Heme/análise , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Mutação , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , Prótons , Quinolonas/farmacologia , Cianeto de Sódio/farmacologia , Espectrofotometria
8.
Biochemistry ; 38(15): 4853-61, 1999 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10200174

RESUMO

Charge translocation across the membrane coupled to transfer of the third electron in the reaction cycle of bovine cytochrome c oxidase (COX) has been studied. Flash-induced reduction of the peroxy intermediate (P) to the ferryl-oxo state (F) by tris-bipyridyl complex of Ru(II) in liposome-reconstituted COX is coupled to several phases of membrane potential generation that have been time-resolved with the use of an electrometric technique applied earlier in the studies of the ferryl-oxo-to-oxidized (F --> O) transition of the enzyme [Zaslavsky, D., et al. (1993) FEBS Lett. 336, 389-393]. As in the case of the F --> O transition, the electric response associated with photoreduction of P to F includes a rapid KCN-insensitive electrogenic phase with a tau of 40-50 microseconds (reduction of heme a by CuA) and a multiphasic slower part; this part is cyanide-sensitive and is assigned to vectorial transfer of protons coupled to reduction of oxygen intermediate in the binuclear center. The net KCN-sensitive phase of the response is approximately 4-fold more electrogenic than the rapid phase, which is similar to the characteristics of the F --> O electrogenic transition and is consistent with net transmembrane translocation of two protons per electron, including vectorial movement of both "chemical" and "pumped" protons. The protonic part of the P --> F electric response is faster than in the F --> O transition and can be deconvoluted into three exponential phases with tau values varying for different samples in the range of 0.25-0.33, 1-1.5, and 6-7.5 ms at pH 8. Of these three phases, the 1-1.5 ms component is the major one contributing 50-60%. The P --> F conversion induced by single electron photoreduction of the peroxy state as studied in this work is several times slower than the P --> F transition resolved during oxidation of the fully reduced oxidase by molecular oxygen. The role of the CuB redox state in controlling the rate of P --> F conversion of heme a3 is discussed.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Oxigênio/química , Animais , Bovinos , Cinética , Potenciais da Membrana , Mitocôndrias Cardíacas/enzimologia , Cianeto de Potássio/química
9.
Proc Natl Acad Sci U S A ; 94(17): 9085-90, 1997 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-9256439

RESUMO

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2-) to the oxidized form (Fe3+OH-). This redox step requires the delivery of a "chemical" H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660-669]. The D channel is likely to be involved in the uptake of both "chemical" and "pumped" protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Prótons , Rhodobacter sphaeroides/enzimologia , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Transporte de Íons , Mutagênese Sítio-Dirigida , Oxirredução
10.
FEBS Lett ; 359(1): 27-30, 1995 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-7851525

RESUMO

Yeast iso-1-cytochrome c covalently modified at cysteine-102 with (4-bromomethyl-4'-methylbipyridine)[bis(bipyridine)]Ru2+ (Ru-102-Cyt c) has been used as a photoactive electron donor to mitochondrial cytochrome c oxidase (COX) reconstituted into phospholipid vesicles. Rapid kinetics of membrane potential generation by the enzyme following flash-induced photoreduction of Ru-102-Cyt c heme has been measured and compared to photovoltaic responses observed with Ru(II)(bipyridyl)3 (RuBpy) as the photoreductant [D.L. Zaslavsky et al. (1993) FEBS Lett. 336, 389-393]. At low ionic strength, when Ru-102-Cyt c forms a tight electrostatic complex with COX, flash-activation results in a polyphasic electrogenic response corresponding to transfer of a negative charge to the interior of the vesicles. The initial rapid phase is virtually identical to the 50 microsecond transient observed in the presence of RuBpy as the photoactive electron donor which originates from electrogenic reduction of heme a by CuA. CuA reduction by Ru-102-Cyt c turns out to be not electrogenic in agreement with the peripheral location of visible copper in the enzyme. A millisecond phase (tau ca. 4 ms) following the 50 microsecond initial part of the response and associated with vectorial translocation of protons linked to oxygen intermediate interconversion in the binuclear centre, can be resolved both with RuBpy and Ru-102-Cyt c as electron donors; however, this phase is small in the absence of added H2O2. In addition to these two transients, the flash-induced electrogenic response in the presence of Ru-102-Cyt c reveals a large slow phase of delta psi generation not observed with RuBpy. This phase is completely quenched upon inclusion of 100 microM ferricyanide in the medium and originates from a second order reaction of COX with the excess Ru-102-Cyt c2+ generated by the flash in a solution.


Assuntos
Grupo dos Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rutênio/química , Cisteína/química , Grupo dos Citocromos c/metabolismo , Eletroquímica , Transporte de Elétrons , Cinética , Lipossomos/metabolismo , Potenciais da Membrana , Compostos Organometálicos/química , Concentração Osmolar , Fotoquímica , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...