Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 115(2): 110579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792019

RESUMO

Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.


Assuntos
Metais Pesados , Pantoea , Pantoea/genética , Biodegradação Ambiental , Sequências Repetitivas Dispersas , Genômica
2.
Microbiol Insights ; 15: 11786361221133794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325108

RESUMO

Coriaria myrtifolia occurs as natural flora of warm temperate climates of northern Algeria which commonly found in hedges, forest and ravine edges. This actinorhizal species was known to establish a mutualistic symbiosis with members of phylogenetic cluster 2 (including strains associated to Coriaria spp., Ceanothus, Datiscaceae, and Dryadoideae) within the genus Frankia. Attempts to isolate C. myrtifolia microsymbionts from native plants growing in 4 locations in Algeria permitted to only recover asymbiotic Frankia strains (unable to reestablish nodulation and to fix nitrogen) from phylogenetic cluster 4 and several non-Frankia actinobacteria including members of Micrococcus, Micromonospora, Nocardia, Plantactinospora, and Streptomyces genera. The biodiversity of Frankia microsymbionts of C. myrtifolia root nodules was assessed using PCR-amplification followed by partial nucleotide sequencing of glnA1 (glutamine synthetase type 1) gene. On the 12 different glnA1 gene sequences obtained in this study, 9 were detected for the first time, and were mainly closelyrelated to Mediterranean genotypes previously described in the Grand Maghreb countries (Morocco and Tunisia) and in Europe (France) but without clear separations from other cluster 2 genotypes.

3.
Front Microbiol ; 13: 1027317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439809

RESUMO

The actinorhizal plant, Coriaria myrtifolia, is a neurotoxic plant species endemic to the western Mediterranean area, which forms a nitrogen-fixing symbiosis with members of Frankia cluster 2. Contrarily to other Frankia clusters, the occurrence and mode of dispersal for infective cluster 2 units outside of the host plant rhizosphere remains controversial. The present study was designed to investigate the structure of the microbiomes of C. myrtifolia phytosphere, rhizosphere, and soil samples extending outward linearly up to 1 km. Results showed that the epiphyte and endophyte communities were not significantly different from each other for most of the plant tissues. The communities associated with the below-ground tissues (nodule and root) were significantly different from those found on the above-ground tissues (fruit, leaves, and stems) and had a higher community richness. Coriaria myrtifolia phytomicrobiomes were dominated by Cyanobacteria for leaf, stem, and fruit while Actinobacteria and Proteobacteria were dominant in the root and nodule organelles. The nodule, a special niche for nitrogen fixation, was mainly inhabited by Frankia but contained several non-Frankia bacteria. Beside Frankia cluster 2, the presence of clusters 1, 4, and large numbers of cluster 3 strains have been detected in nodules, roots, and rhizospheres of C. myrtifolia. Despite Frankia being found in all plots using plant trapping bioassays with C. myrtifolia seedlings, Frankia cluster 2 was not detected in soil metagenomes showing the limits of detection by this approach. This result also suggests that in the absence of appropriate host plant species, Frankia cluster 2 has a reduced number of infective units present in the soil outward from the rhizosphere.

4.
Bioorg Chem ; 115: 105215, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358799

RESUMO

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.


Assuntos
Alcaloides/farmacologia , Antimaláricos/farmacologia , Pantoea/química , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
5.
Curr Microbiol ; 78(4): 1344-1357, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33646380

RESUMO

Biotic and abiotic stresses are severely limiting plant production and productivity. Of notable importance is salt stress that not only limits plant growth and survival, but affects the soil fertility and threatens agricultural ecosystems sustainability. The problem is exacerbated in fragile arid and semi-arid areas where high evaporation, low precipitation and the use of salty water for irrigation is accelerating soil salinization. Legumes, considered very nutritious foods for people and providing essential nutrients for ecosystems are a fundamental element of sustainable agriculture. They can restore soil health by their ability to fix nitrogen in a symbiotic interaction with the rhizobia of the soil. However, salt stress is severely limiting productivity and nitrogen fixation ability in legumes. Plant growth-promoting rhizobacteria (PGPR) and mainly actinobacteria promote plant growth by producing phytohormones, siderophores, antibiotics and antifungal compounds, solubilizing phosphate and providing antagonism to phytopathogenic microorganisms. In addition, actinobacteria have beneficial effects on nodulation and growth of legumes. In this study, actinobacteria isolated from different niches and having PGP activities were used in co-inoculation experiments with rhizobia in Medicago sativa plants rhizosphere submitted to salt stress. The results indicate that drought- and salinity-tolerant Actinobacteria with multiple PGP traits can potentially increase alfalfa growth under saline conditions, in the presence or absence of symbiotic rhizobial bacteria. Actinobacteria discovered in this study can, therefore, be suitable biofertilizers in the formulation of agricultural products improving plant development, health and productivity in saline soils, a necessary alternative for modern agriculture and sustainable development.


Assuntos
Actinobacteria , Sinorhizobium meliloti , Bactérias , Ecossistema , Humanos , Medicago sativa , Estresse Salino , Microbiologia do Solo
6.
Environ Microbiol ; 22(4): 1467-1480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31158316

RESUMO

Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions.


Assuntos
Ambientes Extremos , Microbiota , África do Norte , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Microbiota/genética , Fotossíntese , Raios Ultravioleta
7.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426312

RESUMO

In the arid region Bou-Saâda at the South of Algeria, durum wheat Triticum durum L. cv Waha production is severely threatened by abiotic stresses, mainly drought and salinity. Plant growth-promoting rhizobacteria (PGPR) hold promising prospects towards sustainable and environmentally-friendly agriculture. Using habitat-adapted symbiosis strategy, the PGPR Pantoea agglomerans strain Pa was recovered from wheat roots sampled in Bou-Saâda, conferred alleviation of salt stress in durum wheat plants and allowed considerable growth in this unhostile environment. Strain Pa showed growth up to 35 °C temperature, 5-10 pH range, and up to 30% polyethylene glycol (PEG), as well as 1 M salt concentration tolerance. Pa strain displayed pertinent plant growth promotion (PGP) features (direct and indirect) such as hormone auxin biosynthesis, production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia and phosphate solubilization. PGPR features were stable over wide salt concentrations (0-400 mM). Pa strain was also able to survive in seeds, in the non-sterile and sterile wheat rhizosphere, and was shown to have an endophytic life style. Phylogenomic analysis of strain Pa indicated that Pantoea genus suffers taxonomic imprecision which blurs species delimitation and may have impacted their practical use as biofertilizers. When applied to plants, strain Pa promoted considerable growth of wheat seedlings, high chlorophyll content, lower accumulation of proline, and favored K+ accumulation in the inoculated plants when compared to Na+ in control non-inoculated plants. Metabolomic profiling of strain Pa under one strain many compounds (OSMAC) conditions revealed a wide diversity of secondary metabolites (SM) with interesting salt stress alleviation and PGP activities. All these findings strongly promote the implementation of Pantoea agglomerans strain Pa as an efficient biofertilizer in wheat plants culture in arid and salinity-impacted regions.


Assuntos
Endófitos/fisiologia , Pantoea/fisiologia , Simbiose , Triticum/fisiologia , Secas , Endófitos/genética , Pantoea/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Rizosfera , Salinidade , Tolerância ao Sal , Metabolismo Secundário , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
8.
Microorganisms ; 7(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405010

RESUMO

Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable candidate for isolating endophytic microbiota members that provide plant growth promotion (PGP) and resistance to abiotic stresses. Selected for biocontrol abilities, these endophytes may represent multifaceted and versatile biocontrol agents, combining pathogen biocontrol in addition to PGP and plant protection against abiotic stresses. In this study 117 root culturable bacterial endophytes, including Gram-positive (Bacillus and Brevibacillus), Gram-negative (Proteus, Providencia, Serratia, Pantoea, Klebsiella, Enterobacter and Pectobacterium) and actinomycete Nocardiopsis genera have been recovered from L. monopetalum. The collection exhibited high levels of biocontrol abilities against bacterial (Agrobacterium tumefaciens MAT2 and Pectobacterium carotovorum MAT3) and fungal (Alternaria alternata XSZJY-1, Rhizoctonia bataticola MAT1 and Fusarium oxysporum f. sp. radicis lycopersici FORL) pathogens. Several bacteria also showed PGP capacity and resistance to antibiotics and metals. A highly promising candidate Bacillus licheniformis LMRE 36 with high PGP, biocontrol, metal and antibiotic, resistance was subsequently tested in planta (potato and olive trees) for biocontrol of a collection of 14 highly damaging Fusarium species. LMRE 36 proved very effective against the collection in both species and against an emerging Fusarium sp. threatening olive trees culture in nurseries. These findings provide a demonstration of our pyramiding strategy. Our strategy was effective in combining desirable traits in biocontrol agents towards broad-spectrum resistance against pathogens and protection of crops from abiotic stresses. Stacking multiple desirable traits into a single biocontrol agent is achieved by first, careful selection of a host for endophytic microbiota recovery; second, stringent in vitro selection of candidates from the collection; and third, application of the selected biocontrol agents in planta experiments. That pyramiding strategy could be successfully used to mitigate effects of diverse biotic and abiotic stresses on plant growth and productivity. It is anticipated that the strategy will provide a new generation of biocontrol agents by targeting the microbiota of plants in hostile environments.

9.
Int J Mol Sci ; 19(7)2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29986518

RESUMO

Endophytic fungi of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) represent a promising source of bioactive compounds with biomedical, industrial, and pharmaceutical applications. The fungal endophytes Penicillium citrinum isolate TDPEF34, and Geotrichum candidum isolate TDPEF20 from healthy and BLD date palm trees, respectively, proved very effective in confrontation assays against three pathogenic bacteria, including two Gram-positive bacteria Bacillus thuringiensis (Bt) and Enterococcus faecalis (Ef), and one Gram-negative bacterium Salmonella enterica (St). They also inhibited the growth of three fungi Trichoderma sp. (Ti), Fusarium sporotrichioides (Fs), Trichoderma sp. (Ts). Additionally, their volatile organic compounds (VOCs) were shown to be in part responsible for the inhibition of Ti and Ts and could account for the full inhibition of Fs. Therefore, we have explored their potential as fungal cell factories for bioactive metabolites production. Four extracts of each endophyte were prepared using different solvent polarities, ethanol (EtOH), ethyl acetate (EtOAc), hexane (Hex), and methanol (MetOH). Both endophyte species showed varying degrees of inhibition of the bacterial and fungal pathogens according to the solvent used. These results suggest a good relationship between fungal bioactivities and their produced secondary metabolites. Targeting the discovery of potential anti-diabetic, anti-hemolysis, anti-inflammatory, anti-obesity, and cytotoxic activities, endophytic extracts showed promising results. The EtOAc extract of G. candidum displayed IC50 value comparable to the positive control diclofenac sodium in the anti-inflammatory assays. Antioxidant activity was evaluated using α,α-diphenyl-ß-picrylhydrazyl (DPPH), ß-carotene bleaching, reducing power (RP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonique) (ABTS) radical scavenging assays. The findings revealed strong anti-oxidant power with an IC50 of 177.55 µg/mL for G. candidum EtOAc extract using DPPH assay, probably due to high polyphenol and flavonoid content in both fungal extracts. Finally, LC-HRMS (Liquid Chromatography­High Resolution Mass Spectrometry) and GC-MS (Gas Chromatography­Mass Spectrometry) analysis of G. candidum and P. citrinum extracts revealed an impressive arsenal of compounds with previously reported biological activities, partly explaining the obtained results. Finally, LC-HRMS analysis indicated the presence of new fungal metabolites that have never been reported, which represent good candidates to follow for the discovery of new bioactive molecules.


Assuntos
Proteínas Fúngicas/farmacologia , Geotrichum/isolamento & purificação , Penicillium/isolamento & purificação , Phoeniceae/microbiologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Endófitos/química , Endófitos/isolamento & purificação , Endófitos/metabolismo , Proteínas Fúngicas/metabolismo , Geotrichum/química , Geotrichum/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Penicillium/química , Penicillium/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/farmacologia
10.
Front Microbiol ; 9: 3236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687252

RESUMO

Date palm (Phoenix dactylifera L.) plantations in North Africa are nowadays threatened with the spread of the Bayoud disease caused by Fusarium oxysporum f. sp. albedinis, already responsible for destroying date production in other infected areas, mainly in Morocco. Biological control holds great promise for sustainable and environmental-friendly management of the disease. In this study, the additional benefits to agricultural ecosystems of using plant growth promoting rhizobacteria (PGPR) or endophytes are addressed. First, PGPR or endophytes can offer an interesting bio-fertilization, meaning that it can add another layer to the sustainability of the approach. Additionally, screening of contrasting niches can yield bacterial actors that could represent wardens against whole genera or groups of plant pathogenic agents thriving in semi-arid to arid ecosystems. Using this strategy, we recovered four bacterial isolates, designated BFOA1, BFOA2, BFOA3 and BFOA4, that proved very active against F. oxysporum f. sp. albedinis. BFOA1-BFOA4 proved also active against 16 Fusarium isolates belonging to four species: F. oxysporum (with strains phytopathogenic of Olea europaea and tomato), F. solani (with different strains attacking O. europaea and potato), F. acuminatum (pathogenic on O. europaea) and F. chlamydosporum (phytopathogenic of O. europaea). BFOA1-BFOA4 bacterial isolates exhibited strong activities against another four major phytopathogens: Botrytis cinerea, Alternaria alternata, Phytophthora infestans, and Rhizoctonia bataticola. Isolates BFOA1-BFOA4 had the ability to grow at temperatures up to 35°C, pH range of 5-10, and tolerate high concentrations of NaCl and up to 30% PEG. The isolates also showed relevant direct and indirect PGP features, including growth on nitrogen-free medium, phosphate solubilization and auxin biosynthesis, as well as resistance to metal and xenobiotic stress. Phylogenomic analysis of BFOA1-BFOA4 isolates indicated that they all belong to Bacillus halotolerans, which could therefore considered as a warden against Fusarium infection in plants. Comparative genomics allowed us to functionally describe the open pan genome of B. halotolerans and LC-HRMS and GCMS analyses, enabling the description of diverse secondary metabolites including pulegone, 2-undecanone, and germacrene D, with important antimicrobial and insecticidal properties. In conclusion, B. halotolerans could be used as an efficient bio-fertilizer and bio-control agent in semi-arid and arid ecosystems.

11.
Nat Prod Commun ; 5(5): 835-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20521558

RESUMO

The hydrodistilled oils from the aerial parts of Genista ulicina Spach. and G. vepres Pomel., which are endemic to Algeria, were analyzed by gas chromatography-mass spectrometry (GC-MS). In the oil of G. ulicina, 41 compounds were identified representing 90.8% of the total oil, and in G. vepres, 61 compounds representing 84.5% of the total oil. The analyses showed that the major constituents of the oils were lauric acid (14.3%-8.5%), myristic acid (11.5%-5%), linoleic acid (3.1%-11.7%) and palmitic acid (18.6%-26.4%). Using a diffusion method, the oils showed significant antibacterial activities against Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923).


Assuntos
Genista/química , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Argélia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...