Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(5): 986-998, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037943

RESUMO

The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Lactente , Humanos , Estudos Prospectivos , Bacteriófagos/genética , Lisogenia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Bactérias/genética
2.
Viruses ; 11(7)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330855

RESUMO

The human gut microbiome (GM) plays an important role in human health and diseases. However, while substantial progress has been made in understanding the role of bacterial inhabitants of the gut, much less is known regarding the viral component of the GM. Bacteriophages (phages) are viruses attacking specific host bacteria and likely play important roles in shaping the GM. Although metagenomic approaches have led to the discoveries of many new viruses, they remain largely uncultured as their hosts have not been identified, which hampers our understanding of their biological roles. Existing protocols for isolation of viromes generally require relatively high input volumes and are generally more focused on extracting nucleic acids of good quality and purity for down-stream analysis, and less on purifying viruses with infective capacity. In this study, we report the development of an efficient protocol requiring low sample input yielding purified viromes containing phages that are still infective, which also are of sufficient purity for genome sequencing. We validated the method through spiking known phages followed by plaque assays, qPCR, and metagenomic sequencing. The protocol should facilitate the process of culturing novel viruses from the gut as well as large scale studies on gut viromes.


Assuntos
Fezes/virologia , Microbioma Gastrointestinal , Metagenoma , Metagenômica , Bacteriófagos/classificação , Bacteriófagos/genética , Biologia Computacional/métodos , Humanos , Lactente , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...