Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108224, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38107878

RESUMO

Menstruating individuals without access to adequate hygiene products often improvise with alternatives that pose health risks and limit their participation in society. We describe here a menstrual hygiene product based on low-cost materials, which are integrated onto fabrics to imbue unidirectional permeability. A body-facing "Janus" fabric top layer comprising ZnO tetrapods spray-coated onto polyester mosquito netting imparts hierarchical texturation, augmenting the micron-scale texturation derived from the weave of the underlying fabric. The asymmetric coating establishes a gradient in wettability, which underpins flash spreading and unidirectional permeability. The hygiene product accommodates a variety of absorptive media, which are sandwiched between the Janus layer and a second outward-facing coated densely woven fabric. An assembled prototype demonstrates outstanding ability to wick saline solutions and a menstrual fluid simulant while outperforming a variety of commercially alternatives. The results demonstrate a versatile menstrual health product that provides a combination of dryness, discretion, washability, and safety.

2.
Inorg Chem ; 62(31): 12557-12564, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37499228

RESUMO

Characterization of reactive intermediates in C-H functionalization is challenging due to the fleeting lifetimes of these species. Synthetic photochemistry provides a strategy to generate post-turnover-limiting-step intermediates in catalysis under cryogenic conditions that enable characterization. We have a long-standing interest in the structure and reactivity of Rh2 nitrene intermediates, which are implicated as transient intermediates in Rh2-catalyzed C-H amination. Previously, we demonstrated that Rh2 complexes bearing organic azide ligands can serve as solid-state and in crystallo photoprecursors in the synthesis of transient Rh2 nitrenoids. Complementary solution-phase experiments have not been available due to the weak binding of most organic azides to Rh2 complexes. Furthermore, the volatility of the N2 that is evolved during in crystallo nitrene synthesis from these precursors has prevented the in crystallo observation of C-H functionalization from lattice-confined nitrenes. Motivated by these challenges, here we describe the synthesis and photochemistry of nonclassical nitrene precursors based on sulfilimine ligands. Sulfilimines bind to Rh2 carboxylate complexes more tightly than the corresponding azides, which has enabled the full solid-state and solution-phase characterization of these new complexes. The higher binding affinity of sulfilimine ligands as compared with organic azides has enabled both solution-phase and solid-state nitrene photochemistry. Cryogenic photochemical studies of Rh2 sulfilimine complexes confined within polystyrene thin films demonstrate that sulfilimine photochemistry can be accomplished at low temperature but that C-H amination is rapid at temperatures compatible with N═S photoactivation. The potential of these structures to serve as platforms for multistep in crystallo cascades is discussed.

3.
ACS Omega ; 8(5): 4430-4435, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777591

RESUMO

Despite the existence of a substantial amount of climate-related scientific data, misconceptions about climate change are still prevalent within public opinion. Dissemination of misinformation to the public through subjective media sources is a major challenge that climate scientists face. Implementation of climate policy is crucial for mitigation and adaptation measures required to curtail anthropogenic rooted climate change. This paper will discuss student perspectives on the 2022 United Nations climate summit in Egypt (COP27) related to climate literacy and public opinion as the driving forces behind the enactment and execution of important climate-based policy.

4.
iScience ; 25(10): 105063, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157574

RESUMO

Oil production in the Permian Basin gives rise to large volumes of produced water contaminated by silt, emulsified oil, and additives used for enhanced oil recovery. There is intense interest in the design of membrane modules as sustainable alternatives for produced water treatment to enable the reuse of produced water for agricultural applications, injection into aquifers, and redeployment in oil recovery. Here, we report a hierarchically textured cement-based membrane exhibiting orthogonal wettability, specifically, superhydrophilic and underwater superoleophobic characteristics. The in situ formation of ettringite needles accompanied by embedding of glass spheres imbues multiscale texturation to stainless-steel mesh membranes, enabling the separation of silt and oil from produced water at high flux rates (1600 L h-1Û°m-2, at ca. 2.7 bar). Oil concentration is reduced as low as 1 ppb with an overall separation efficiency of 99.7% in single-pass filtration. The membranes show outstanding mechanical resilience and retention of performance across multiple cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...