Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(23): 28649-28663, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265007

RESUMO

Chemical solution deposition (CSD) methods involving the thermal decomposition of 5.0 M Er(NO3)3·5H2O and Y(NO3)3·6H2O precursor solutions were employed to fabricate protective erbia and yttria coatings onto stainless steel (SS304/SS316) coupons. The two techniques tested were dip and spray coating, which were then compared to a commercial yttria spray (ZYP Coatings). It was determined that solution concentration, solvent choice, injection of Er2O3 and Y2O3 micropowder, and the annealing temperature/ramp profile were critical to the coatings' physical properties. For dip coatings, thicknesses were 1-20 µm after two dipping/annealing cycles, and adhesion strength was ∼1000 psi, increasing up to ∼1300 psi if the SS coupons had preliminary sandblasting. Spray coatings from precursor solutions were reported to have thicknesses of 20-80 µm and adhesion strength less than 500 psi (regardless of the coupon surface finish). Cross-sectional views of the coatings confirmed subsurface porosity, and XRD results indicated that the coatings were polycrystalline, with patterns typical to that of cubic Er2O3 and Y2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...