Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(2): 249-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623163

RESUMO

Currently, salinization is impacting more than 50% of arable land, posing a significant challenge to agriculture globally. Salt causes osmotic and ionic stress, determining cell dehydration, ion homeostasis, and metabolic process alteration, thus negatively influencing plant development. A promising sustainable approach to improve plant tolerance to salinity is the use of plant growth-promoting bacteria (PGPB). This work aimed to characterize two bacterial strains, that have been isolated from pea root nodules, initially called PG1 and PG2, and assess their impact on growth, physiological, biochemical, and molecular parameters in three pea genotypes (Merveille de Kelvedon, Lincoln, Meraviglia d'Italia) under salinity. Bacterial strains were molecularly identified, and characterized by in vitro assays to evaluate the plant growth promoting abilities. Both strains were identified as Erwinia sp., demonstrating in vitro biosynthesis of IAA, ACC deaminase activity, as well as the capacity to grow in presence of NaCl and PEG. Considering the inoculation of plants, pea biometric parameters were unaffected by the presence of the bacteria, independently by the considered genotype. Conversely, the three pea genotypes differed in the regulation of antioxidant genes coding for catalase (PsCAT) and superoxide dismutase (PsSOD). The highest proline levels (212.88 µmol g-1) were detected in salt-stressed Lincoln plants inoculated with PG1, along with the up-regulation of PsSOD and PsCAT. Conversely, PG2 inoculation resulted in the lowest proline levels that were observed in Lincoln and Meraviglia d'Italia (35.39 and 23.67 µmol g-1, respectively). Overall, this study highlights the potential of these two strains as beneficial plant growth-promoting bacteria in saline environments, showing that their inoculation modulates responses in pea plants, affecting antioxidant gene expression and proline accumulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01419-8.

2.
J Exp Bot ; 75(10): 3070-3091, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334507

RESUMO

Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/imunologia , Triticum/genética , Triticum/fisiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
3.
Heliyon ; 10(1): e23594, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205296

RESUMO

Soil functionality is critical to the biosphere as it provides ecosystem services relevant for a healthy planet. The soil microbial composition is significantly impacted by anthropogenic activities, including urbanization. In this context, the study of soil microorganisms associated to urban green spaces has started to be crucial toward sustainable city development. Microbes living in the soil produce and degrade volatile organic compounds (VOCs). The VOC profiles may be used to distinguish between soils with various characteristics and management practices, reflecting variations in the activity of soil microbes that use a variety of metabolic pathways. Here, a combined approach based on DNA metabarcoding and GC-MS analysis was used to evaluate the soil quality from urban flowerbeds in Prato (Tuscany, Italy) in terms of microbial biodiversity and VOC emission profiles, with the final aim of evaluating the possible correlation between composition of microbial community and VOC patterns. Results showed that VOCs in the considered soil originated from anthropic and biological activity, and significant correlations between specific microbial taxa and VOCs were detected. Overall, the study demonstrated the feasibility of the use of microbe-VOC correlation as a proxy for soil quality assessment in urban soils.

4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279288

RESUMO

In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping.


Assuntos
Agricultura , Fabaceae , Agricultura/métodos , Zea mays/genética , Raízes de Plantas , Rizosfera , RNA Ribossômico 16S/genética , Fabaceae/genética , Solo , Bactérias/genética , Genótipo , Microbiologia do Solo
5.
Curr Res Microb Sci ; 5: 100205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077268

RESUMO

Legumes improve soil fertility by interacting symbiotically with nitrogen-fixing rhizobia allocated in root nodules. Some bacterial endophytes can coexist with rhizobia in nodules and might help legumes by enhancing stress tolerance, producing hormones stimulating plant growth, and increasing plant nutrient intake. Twenty-six bacterial endophytes from Lens culinaris root nodules cultivated in intercropping with Triticum durum were identified and characterized molecularly and biochemically. Potential plant growth-promoting strains have been selected according to the indole acetic acid and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, and for their inorganic phosphate solubilization ability. The presence of genes associated to ACC deaminase and nitrogenase was evaluated. Six selected strains were grown with varying NaCl and polyethylene glycol concentrations to test their salt and osmotic stress tolerance. Priestia megaterium 11NL3 and Priestia aryabhattai 19NL1, resulted to be tolerant to salinity and osmotic stress, were tested on four genotypes of T. durum seeds in different stress conditions. The effect of strain inoculation on seed germination, vigor, and root-to-shoot ratio varied depending on the type of stress and on the durum wheat genotypes. For future research, it will be necessary to test the selected bacterial strains at different plant phenological stages and to clarify the mechanisms involved in the different outcomes of plant-microbe interactions.

6.
Front Plant Sci ; 14: 1297090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078116

RESUMO

Introduction: Food crops are increasingly susceptible to the challenging impacts of climate change, encompassing both abiotic and biotic stresses, that cause yield losses. Root-associated microorganisms, including plant growth-promoting bacteria (PGPB), can improve plant growth as well as plant tolerance to environmental stresses. The aims of this work were to characterize bacteria isolated from soil and roots of tomato plants grown in open field. Methods: Biochemical and molecular analyses were used to evaluate the PGP potential of the considered strains on tomato plants in controlled conditions, also assessing their effects under a water deficit condition. The isolated strains were classified by 16S gene sequencing and exhibited typical features of PGPB, such as the release of siderophores, the production of proteases, and phosphorous solubilization. Inoculating tomato plants with eleven selected strains led to the identification of potentially interesting strains that increased shoot height and dry weight. Three strains were then selected for the experiment under water deficit in controlled conditions. The tomato plants were monitored from biometric and physiological point of view, and the effect of inoculation at molecular level was verified with a targeted RT-qPCR based approach on genes that play a role under water deficit condition. Results: Results revealed the PGP potential of different bacterial isolates in tomato plants, both in well-watered and stressed conditions. The used integrated approach allowed to obtain a broader picture of the plant status, from biometric, eco-physiological and molecular point of view. Gene expression analysis showed a different regulation of genes involved in pathways related to abscisic acid, osmoprotectant compounds and heat shock proteins, depending on the treatments. Discussion: Overall, results showed significant changes in tomato plants due to the bacterial inoculation, also under water deficit, that hold promise for future field applications of these bacterial strains, suggesting that a synergistic and complementary interaction between diverse PGPB is an important point to be considered for their exploitation.

7.
Planta ; 259(2): 33, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160210

RESUMO

MAIN CONCLUSION: Root transcriptomics and biochemical analyses in water-stressed Pisum sativum plants inoculated with Pseudomonas spp. suggested preservation of ABA-related pathway and ROS detoxification, resulting in an improved tolerance to stress. Drought already affects agriculture in large areas of the globe and, due to climate change, these areas are predicted to become increasingly unsuitable for agriculture. For several years, plant growth-promoting bacteria (PGPB) have been used to improve legume yields, but many aspects of this interaction are still unclear. To elucidate the mechanisms through which root-associated PGPB can promote plant growth in dry environments, we investigated the response of pea plants inoculated with a potentially beneficial Pseudomonas strain (PK6) and subjected to two different water regimes. Combined biometric, biochemical, and root RNA-seq analyses revealed that PK6 improved pea growth specifically under water deficit, as inoculated plants showed an increased biomass, larger leaves, and longer roots. Abscisic acid (ABA) and proline quantification, together with the transcriptome analysis, suggested that PK6-inoculated plant response to water deficit was more diversified compared to non-inoculated plants, involving alternative metabolic pathways for the detoxification of reactive oxygen species (ROS) and the preservation of the ABA stress signaling pathway. We suggest that the metabolic response of PK6-inoculated plants was more effective in their adaptation to water deprivation, leading to their improved biometric traits. Besides confirming the positive role that PGPB can have in the growth of a legume crop under adverse conditions, this study offers novel information on the mechanisms regulating plant-bacteria interaction under varying water availability. These mechanisms and the involved genes could be exploited in the future for the development of legume varieties, which can profitably grow in dry climates.


Assuntos
Pisum sativum , Pseudomonas , Pisum sativum/genética , Água/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Raízes de Plantas/metabolismo , Secas
8.
Sci Total Environ ; 904: 166809, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690750

RESUMO

Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.


Assuntos
Quercus , Quercus/fisiologia , Ecossistema , Genótipo , Florestas , Árvores , Água , Secas
9.
Plant J ; 116(2): 416-431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421313

RESUMO

Orchid mycorrhiza (OM) represents an unusual symbiosis between plants and fungi because in all orchid species carbon is provided to the host plant by the mycorrhizal fungus at least during the early stages of orchid development, named a protocorm. In addition to carbon, orchid mycorrhizal fungi provide the host plant with essential nutrients such as phosphorus and nitrogen. In mycorrhizal protocorms, nutrients transfer occurs in plant cells colonized by the intracellular fungal coils, or pelotons. Whereas the transfer of these vital nutrients to the orchid protocorm in the OM symbiosis has been already investigated, there is currently no information on the transfer of sulfur (S). Here, we used ultra-high spatial resolution secondary ion mass spectrometry (SIMS) as well as targeted gene expression studies and laser microdissection to decipher S metabolism and transfer in the model system formed by the Mediterranean orchid Serapias vomeracea and the mycorrhizal fungus Tulasnella calospora. We revealed that the fungal partner is actively involved in S supply to the host plant, and expression of plant and fungal genes involved in S uptake and metabolism, both in the symbiotic and asymbiotic partners, suggest that S transfer most likely occurs as reduced organic forms. Thus, this study provides original information about the regulation of S metabolism in OM protocorms, adding a piece of the puzzle on the nutritional framework in OM symbiosis.

10.
Environ Microbiol Rep ; 15(6): 459-483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37226644

RESUMO

Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.


Assuntos
Cicer , Lens (Planta) , Microbiota , Solo , Microbiota/genética , Bactérias/genética , Genótipo , Microbiologia do Solo , Raízes de Plantas/microbiologia
11.
Sci Total Environ ; 878: 163124, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001665

RESUMO

Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the ß-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.


Assuntos
Quercus , Madeira , Madeira/metabolismo , Plântula/metabolismo , Quercus/fisiologia , Desidratação , Xilema/fisiologia , Carboidratos , Secas , Folhas de Planta/fisiologia , Amido/metabolismo , Glucose , Árvores/fisiologia
12.
Front Plant Sci ; 13: 992395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247634

RESUMO

Olea europaea L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops. Salt stress represents one current major threats to crop production, including olive tree. In order to overcome this constraint, several cultivars have been evaluated over the years using biochemical and physiological methods to select the most suitable ones for cultivation in harsh environments. Thus the development of novel methodologies have provided useful tools for evaluating the adaptive capacity of cultivars, among which the evaluation of the plant-microbiota ratio, which is important for the maintenance of plant homeostasis. In the present study, four olive tree cultivars (two traditional and two for intensive cultivation) were subjected to saline stress using two concentrations of salt, 100 mM and 200 mM. The effects of stress on diverse cultivars were assessed by using biochemical analyses (i.e., proline, carotenoid and chlorophyll content), showing a cultivar-dependent response. Additionally, the olive tree response to stress was correlated with the leaf endophytic bacterial community. Results of the metabarcoding analyses showed a significant shift in the resident microbiome for plants subjected to moderate salt stress, which did not occur under extreme salt-stress conditions. In the whole, these results showed that the integration of stress markers and endophytic community represents a suitable approach to evaluate the adaptation of cultivars to environmental stresses.

13.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079627

RESUMO

Plant growth promoting (PGP) bacteria are known to enhance plant growth and protect them from environmental stresses through different pathways. The rhizosphere of perennial plants, including olive, may represent a relevant reservoir of PGP bacteria. Here, seven bacterial strains isolated from olive rhizosphere have been characterized taxonomically by 16S sequencing and biochemically, to evaluate their PGP potential. Most strains were identified as Pseudomonas or Bacillus spp., while the most promising ones belonged to genera Pseudomonas and Curtobacterium. Those strains have been tested for their capacity to grow under osmotic or salinity stress and to improve the germination and early development of Triticum durum subjected or not to those stresses. The selected strains had the ability to grow under severe stress, and a positive effect has been observed in non-stressed seedlings inoculated with one of the Pseudomonas strains, which showed promising characteristics that should be further evaluated. The biochemical and taxonomical characterization of bacterial strains isolated from different niches and the evaluation of their interaction with plants under varying conditions will help to increase our knowledge on PGP microorganisms and their use in agriculture.

14.
Methods Mol Biol ; 2536: 369-380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819614

RESUMO

In the past 20 years, laser microdissection (LMD) technology has been widely applied to plant tissues, allowing to obtain new information on the role of different cell-type populations during plant development and interactions, including plant-pathogen interactions. The application of a LMD approach allowed verifying the response of plant and pathogen during the progression of the infection in different cell types, focusing both on gene expression in host plants and pathogens. Here, a protocol to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations is described in detail, from the biological material preparation to RNA extraction and gene expression analyses.


Assuntos
Fungos , Plantas , Fungos/genética , Microdissecção e Captura a Laser , Lasers , Plantas/metabolismo
15.
Methods Mol Biol ; 2536: 405-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819617

RESUMO

Population genetics allow to address fundamental questions about the biology of plant pathogens. By testing specific hypotheses, population genetics provide insights into the population genetic variability of pathogens across different geographical areas, time, and associated plant hosts, as well as on the structure and differentiation of populations, and on the possibility that a population is introduced and from where it has originated. In this chapter, basic concepts of population genetics are introduced, as well as the five evolutionary factors affecting populations, that is, mutations, recombination, variation in population size, gene flow, and natural selection. A step-by-step workflow, from sampling to data analysis, on how to perform a genetic analysis of natural populations of plant pathogens is discussed. Increased knowledge of the population biology of pathogens is pivotal to improve management strategies of diseases in agricultural and forest ecosystems.


Assuntos
Ecossistema , Plantas , Evolução Biológica , Genética Populacional , Plantas/genética , Seleção Genética
16.
Front Microbiol ; 13: 864434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651491

RESUMO

Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.

17.
Food Anal Methods ; 15(7): 1803-1815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282313

RESUMO

Grifola frondosa ("Maitake") is an edible fungus with several nutraceutical properties, largely used in traditional medicine. The increased use of Maitake as a food supplements ingredient raised the need of accurate authentication methods since the morphological identification of G. frondosa is not feasible in formulated food supplements. We developed a diagnostic tool based on loop-mediated isothermal AMPlification (LAMP) for the detection of G. frondosa in food supplements. First, a modified CTAB protocol for DNA extraction from food supplements has been set up and it has been shown to be able to isolate amplifiable total genomic material from different types of commercial products. Subsequently, the LAMP assay confirmed high specificity and good analytical sensitivity, allowing to detect up to 0.62 pg of genomic DNA in less than 20 min. Ten related fungal species resulted negative, confirming the specificity of the assay. The presence of Maitake in commercial food supplements was confirmed, except for one, revealing a mislabeling (or a food fraud). This assay proved to be a rapid powerful tool for food authentication purposes and routine inspections at any level of the supply chain of Maitake-based products and it can be used as a model for other quality control assays of fungal food products. Supplementary Information: The online version contains supplementary material available at 10.1007/s12161-022-02235-0.

18.
Tree Physiol ; 42(7): 1463-1480, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35137225

RESUMO

Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.


Assuntos
Ascomicetos , Corylus , Micorrizas , Corylus/genética , Corylus/microbiologia , Genótipo , Micorrizas/fisiologia
19.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163015

RESUMO

Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes' richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants' fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant-microbiome interactions. These associated microorganisms can increase plants' endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.


Assuntos
Actinobacteria/fisiologia , Biologia Computacional/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Micorrizas/fisiologia , Mudança Climática , Produtos Agrícolas/microbiologia , Genômica , Metabolômica , Desenvolvimento Vegetal , Microbiologia do Solo , Estresse Fisiológico , Biologia de Sistemas
20.
PLoS One ; 16(12): e0262180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972198

RESUMO

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.


Assuntos
Regulação Fúngica da Expressão Gênica , Hypocreales/metabolismo , Nitrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Parede Celular/metabolismo , Bases de Dados Genéticas , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Genoma Fúngico , Estudo de Associação Genômica Ampla , Peso Molecular , Mutação , Fenótipo , Fosforilação , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Proteína S6 Ribossômica/química , Análise de Sequência de RNA , Transdução de Sinais , Sirolimo/farmacologia , Terpenos/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...