Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(3): 7325-7344, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36038690

RESUMO

Understanding phytoplankton community shifts under multiple stressors is becoming increasingly important. Among other combinations of stressors, the impact of trace metal toxicity on marine phytoplankton under the ocean acidification scenario is an important aspect to address. Such multiple stressor studies are rare from the Arabian Sea, one of the highest productive oceanic provinces within the North Indian Ocean. We studied the interactive impacts of copper (Cu) and CO2 enrichment on two natural phytoplankton communities from the eastern and central Arabian Sea. Low dissolved silicate (DSi < 2 µM) favoured smaller diatoms (e.g. Nitzschia sp.) and non-diatom (Phaeocystis). CO2 enrichment caused both positive (Nitzschia sp. and Phaeocystis sp.) and negative (Cylindrotheca closterium, Navicula sp., Pseudo-nitzschia sp., Alexandrium sp., and Gymnodinium sp.) growth impacts. The addition of Cu under the ambient CO2 level (A-CO2) hindered cell division in most of the species, whereas Chla contents were nearly unaffected. Interestingly, CO2 enrichment seemed to alleviate Cu toxicity in some species (Nitzschia sp., Cylindrotheca closterium, Guinardia flaccida, and Phaeocystis) and increased their growth rates. This could be related to the cellular Cu demand and energy budget at elevated CO2 levels. Dinoflagellates were more sensitive to Cu supply compared to diatoms and prymnesiophytes and could be related to the unavailability of prey. Such community shifts in response to the projected ocean acidification, oligotrophy, and Cu pollution may impact trophic transfer and carbon cycling in this region.


Assuntos
Diatomáceas , Dinoflagellida , Haptófitas , Fitoplâncton , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Água do Mar , Dinoflagellida/fisiologia , Oceano Índico
2.
Sci Total Environ ; 844: 157044, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35779722

RESUMO

Particulate organic carbon and nitrogen (POC, PN, collectively particulate organic matter, POM) and the stable isotopic signature of POC (δ13CPOC) are important to delineate its sources and recycling in shelf water. The present study provides insights into the factors responsible for spatial and interannual variability in POM and δ13CPOC values along the western Indian shelf waters (8° N -21° N) during the southwest (SW) monsoon (August) 2017 and 2018. The dominance of phytoplankton-derived POM with a negligible terrestrial influence was evident from the positive correlation between POC and TChla contents, ratios of C: N, and δ13CPOC signatures. Prominent upwelling signatures [cold nutrient-rich water, higher POM, total Chlorophylla (TChla), and δ13CPOC values] were noted in the south (8-12° N), whereas low nutrient warm waters (lower values of POM, TChla, and δ13CPOC) were prevalent in the north (13-21° N). Phytoplankton biomass was significantly higher and matured in 2017 due to an early and stronger upwelling in the south. In 2018, delayed and weak upwelling (evident from Ekman offshore transport and pumping velocity) resulted in the late development of phytoplankton bloom and lower POM. Furthermore, considerably lower nutrient supply within the mixed layers in 2018 compared to 2017 was partially attributed to the enhanced spatial expansion of low salinity waters closer to the surface. In the north, in 2018, higher wind speeds enhanced vertical mixing resulting in increased nutrient supply and TChla compared to 2017. We conclude that monsoon wind speed in the northern shelf and strength as well as the timing of the upwelling, including freshwater flux in the south, can be the key factors in modulating the interannual variability in POM distribution and δ13CPOC signature in the western Indian Shelf waters.


Assuntos
Monitoramento Ambiental , Material Particulado , Carbono , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Fitoplâncton , Água
3.
Environ Monit Assess ; 194(8): 581, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821440

RESUMO

The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 µatm; high CO2, 843, 1138 µatm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate + nitrite levels were quite low (< 2 µM). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19'HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region.


Assuntos
Diatomáceas , Dinoflagellida , Dióxido de Carbono , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Índia , Fitoplâncton , Água do Mar
4.
Mar Environ Res ; 155: 104880, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072984

RESUMO

Increasing dissolution of CO2 in the surface ocean is rapidly decreasing its pH and changing carbon chemistry which is further affecting marine biota in several ways. Phytoplankton response studies under the combination of elevated CO2 and trace metals are rare. We have conducted two consecutive onboard incubation experiments (R. V. Sindhu Sadhana; August 2017) in the eastern Arabian Sea (SW coast of India) during an upwelling event. A nutrient enriched diatom bloom was initiated onboard and grown under ambient (≈400 µatm, A-CO2) and high CO2 levels (≈1000 µatm; H-CO2) with different zinc (Zn; 1 nM) and copper (Cu) concentrations (1 nM, 2 nM and 8 nM). Phytoplankton community composition and the dominant genera were different during these two experiments. CO2 enrichment alone did not show any significant growth stimulating impact on the experimental community except enhanced cell density in the first experiment. Addition of Zn at A-CO2 level revealed no noticeable responses; whereas, the same treatment under H-CO2 level significantly reduced cell number. Considerably high protein content under H-CO2+Zn treatment was possibly counteracting Zn toxicity which also caused slower growth rate. Cu addition did not show any noticeable impact on growth and biomass production except increased protein content as well as decreased carbohydrate: protein ratio. This can be attributed to relatively higher protein synthesis than carbohydrate to alleviate oxidative stress generated by Cu. The centric diatom Chaetoceros and toxin producing pennate diatom Pseudo-nitzschia showed no significant response to either CO2 or Zn enrichment. Large centric diatom Leptocylindrus and Skeletonema responded positively to Zn addition in both CO2 levels. The former species showed the most sensitive response at the highest Cu and H-CO2 treatment; whereas, the pennate diatoms Nitzschia and Pseudo-nitzschia (toxigenic diatom) showed higher resilience under elevated CO2 and Cu levels. This observation indicated that in future ocean, increasing CO2 concentrations and trace metal pollution may potentially alter phytoplankton community structure and may facilitate toxigenic diatom bloom in the coastal waters.


Assuntos
Cobre/química , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Água do Mar/química , Zinco/química , Ácidos , Concentração de Íons de Hidrogênio , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...