Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanophotonics ; 13(14): 2565-2573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836100

RESUMO

Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light-matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light-matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.

2.
Sci Adv ; 10(18): eadj3435, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691593

RESUMO

Quantum entanglement and decoherence are the two counterforces of many quantum technologies and protocols. For example, while quantum teleportation is fueled by a pair of maximally entangled resource qubits, it is vulnerable to decoherence. Here, we propose an efficient quantum teleportation protocol in the presence of pure decoherence and without entangled resource qubits entering the Bell-state measurement. Instead, we use multipartite hybrid entanglement between the auxiliary qubits and their local environments within the open-quantum system context. With a hybrid-entangled initial state, it is the decoherence that allows us to achieve high fidelities. We demonstrate our protocol in an all-optical experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...