Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 247: 127-133, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28065862

RESUMO

Inflammation is a known mediator of adverse ventricular remodeling after myocardial infarction (MI) that may lead to reduction of ejection fraction and subsequent heart failure. Berberine is a isoquinoline quarternary alkaloid from plants that has been associated with anti-inflammatory, anti-oxidative, and cardioprotective properties. Its poor solubility in aqueous buffers and its short half-life in the circulation upon injection, however, have been hampering the extensive usage of this natural product. We hypothesized that encapsulation of berberine into long circulating liposomes could improve its therapeutic availability and efficacy by protecting cardiac function against MI in vivo. Berberine-loaded liposomes were prepared by ethanol injection and characterized. They contained 0.3mg/mL of the drug and were 0.11µm in diameter. Subsequently they were tested for IL-6 secretion inhibition in RAW 264.7 macrophages and for cardiac function protection against adverse remodeling after MI in C57BL/6J mice. In vitro, free berberine significantly inhibited IL-6 secretion (IC50=10.4µM), whereas encapsulated berberine did not as it was not released from the formulation in the time frame of the in vitro study. In vivo, berberine-loaded liposomes significantly preserved the cardiac ejection fraction at day 28 after MI by 64% as compared to control liposomes and free berberine. In conclusion, liposomal encapsulation enhanced the solubility of berberine in buffer and preserves ejection fraction after MI. This shows that delivery of berberine-loaded liposomes significantly improves its therapeutic availability and identifies berberine-loaded liposomes as potential treatment of adverse remodeling after MI.


Assuntos
Anti-Inflamatórios/administração & dosagem , Berberina/administração & dosagem , Cardiotônicos/administração & dosagem , Coração/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Berberina/uso terapêutico , Cardiotônicos/uso terapêutico , Coração/fisiopatologia , Interleucina-6/análise , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Células RAW 264.7 , Remodelação Ventricular/efeitos dos fármacos
2.
Vascul Pharmacol ; 82: 51-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189780

RESUMO

BACKGROUND: Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages in patients, which did however not translate into therapeutic efficacy. This unanticipated finding calls for in-depth screening of drugs intended for targeting plaque macrophages. METHODS AND RESULTS: We evaluated the effect of several candidate drugs on macrophage activity, rating overall performance with respect to changes in cytokine release, oxidative stress, lipid handling, endoplasmic reticulum (ER) stress, and proliferation of macrophages. Using this in vitro approach, we observed that the anti-inflammatory effect of prednisolone was counterbalanced by multiple adverse effects on other key pathways. Conversely, pterostilbene, T0901317 and simvastatin had an overall anti-atherogenic effect on multiple pathways, suggesting their potential for liposomal delivery. CONCLUSION: This dedicated assay setup provides a framework for high-throughput assessment. Further in vivo studies are warranted to determine the predictive value of this macrophage-based screening approach and its potential value in nanomedicinal drug development for cardiovascular patients.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Hidrocarbonetos Fluorados/farmacologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prednisolona/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sinvastatina/farmacologia , Estilbenos/farmacologia , Sulfonamidas/farmacologia , Transfecção
3.
Nanomedicine (Lond) ; 11(6): 597-616, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27003004

RESUMO

AIM: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. METHODS: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. RESULTS & CONCLUSIONS: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 µg/ml in static, and up to 400 µg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.


Assuntos
Nanopartículas/química , Nanopartículas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipossomos/química , Lipossomos/toxicidade , Masculino , Polímeros/química , Polímeros/toxicidade , Suínos
4.
Int J Pharm ; 454(2): 641-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23726904

RESUMO

Amphotericin B (AmB) is a very efficient drug against serious diseases such as leishmaniasis and systemic fungal infections. However, its oral bioavailability is limited due to its poor solubility in water. Nevertheless, it is marketed as high-cost lipid parenteral formulations that may induce serious infusion-related side effects. In this study, oil-in-water (O/W) microemulsions (MEs) were developed and characterized with a view to their use as solubility enhancers and oral delivery systems for AmB. Therefore, different nonionic surfactants from the Tween(®) and Span(®) series were tested for their solubilization capacity in combination with several oils. Based on pseudoternary phase diagrams, AmB-loaded MEs with mean droplet sizes about 120 nm were successfully produced. They were able to improve the drug solubility up to 1000-fold. Rheological studies showed the MEs to be low-viscosity formulations with Newtonian behavior. Circular dichroism and absorption spectra revealed that part of the AmB in the MEs was aggregated as an AmB reservoir carrier. Cytotoxicity studies revealed limited toxicity to macrophage-like cells that may allow the formulations to be considered as suitable carriers for AmB.


Assuntos
Anfotericina B/química , Anti-Infecciosos/química , Lipídeos/química , Tensoativos/química , Administração Oral , Anfotericina B/administração & dosagem , Animais , Anti-Infecciosos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Camundongos , Reologia , Água/química
5.
J Microencapsul ; 30(8): 787-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23631384

RESUMO

Xylan is a biopolymer found in a variety of cell wall plants. Eudragit® S-100 (ES100), a pH-dependent polymer, is used as a coating material in gastroresistant delivery systems. In this study, microparticles based on both polymers were produced by interfacial cross-linking polymerisation and/or spray-drying technique in order to investigate feasibility and stability of the systems. Size and morphology of the microparticles were characterised by optical and SEM while FT-IR, thermal analysis (TG/DTA), and X-ray diffraction (XRD) evaluated the drug-polymer interactions and the thermal behaviour of the systems. FT-IR confirmed the absence of chemical interaction between the polymers. TG/DTA analysis showed a higher stability for spray-dried microparticles and XRD data proved the amorphous feature of both carriers. The results reveal that xylan/ES100 microparticles can be produced by chemical or physico-mechanical ways, the latter being the best option due to the lack of toxic cross-linking agents and easy scale-up.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos/química , Mesalamina/administração & dosagem , Ácidos Polimetacrílicos/química , Xilanos/química , Dessecação , Análise Diferencial Térmica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Bioresour Technol ; 101(14): 5402-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20171878

RESUMO

Although many authors have reported several beneficial effects ascribed to xylan, such as inhibitory action on mutagenicity activity, antiphlogistic effects, and mitogenic and comitogenic activities, few papers have investigated a systematic study on the technological properties of this polymer. The aim of the present work was to evaluate xylan as a promise raw material for the pharmaceutical industry. The water-insoluble xylan samples were extracted from corn cobs following several steps. The obtained powered sample was analyzed by infrared and RMN spectroscopy, and characterized regarding their particle size, bulk and tap densities, compressibility index, compactability, Hausner ratio, and angle of repose. According to the results, infrared and RMN spectroscopy were shown to be able to evaluate the xylan structural conformation and composition, respectively. In addition, rheological data demonstrated that xylan powder obtained from corn cobs may be characterized as a material with low density and very cohesive flow properties.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Polímeros , Zea mays/química , Biotecnologia/métodos , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Varredura/métodos , Mutagênicos , Tamanho da Partícula , Pós , Reologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia Farmacêutica/métodos , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...