Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Clin Genet ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015008

RESUMO

Limb-girdle muscular dystrophy type 2G/R7 (LGMD2G/R7) is an ultra-rare condition initially identified within the Brazilian population. We aimed to expand clinical and genetic information about this disease, including its worldwide distribution. A multicenter historical cohort study was performed at 13 centers in Brazil in which data from index cases and their affected relatives from consecutive families with LGMD2G/R7 were reviewed from July 2017 to August 2023. Additionally, a systematic literature review was conducted to identify case reports and series of the disease worldwide. Forty-one LGMD2G/R7 cases were described in the Brazilian cohort, being all subjects homozygous for the c.157C>T/(p.Gln53*) variant in TCAP. Survival curves showed that the median disease duration before individuals required walking aids was 21 years. Notably, women exhibited a slower disease progression, requiring walking aids 13 years later than men. LGMD2G/R7 was frequently reported not only in Brazil but also in China and Bulgaria, with 119 cases identified globally, with possible founder effects in the Brazilian, Eastern European, and Asian populations. These findings are pivotal in raising awareness of LGMD2G/R7, understanding its progression, and identifying potential modifiers. This can significantly contribute to the development of future natural history studies and clinical trials for this disease.

2.
Biometals ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773014

RESUMO

The iron(III) binding properties of citrate and rhizoferrin, a citrate containing siderophore, are compared. Citrate forms many oligonuclear complexes, whereas rhizoferrin forms a single mononuclear complex. The α-hydroxycarboxylate functional group, which is present in both citrate, and rhizoferrin, has a high affinity and selectivity for iron(III) under most biological conditions. The nature of the toxic form of iron found in the blood of patients suffering from many haemoglobinopathies and haemochromatosis is identified as a mixture of iron(III)citrate complexes. The significance of the presence of this iron pool to patients suffering from systemic iron overload is discussed. The wide utilisation of the α-hydroxycarboxylate functional group in siderophore structures is described, as is their photo-induced decarboxylation leading to the release of iron(II) ions. The importance of this facile dissociation to algal iron uptake is discussed.

3.
ACS Nano ; 18(14): 10088-10103, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535625

RESUMO

Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lectinas/metabolismo , Glicosilação , Glicopeptídeos/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Células Dendríticas
4.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542435

RESUMO

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Transportador de Glucose Tipo 1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
5.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
6.
Leukemia ; 38(1): 96-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857886

RESUMO

Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.


Assuntos
Anemia , Hemocromatose , Sobrecarga de Ferro , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Anemia/metabolismo , Eritropoese/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
7.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958659

RESUMO

Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.


Assuntos
Diabetes Mellitus , Compostos de Vanádio , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Compostos de Vanádio/farmacologia , Compostos de Vanádio/uso terapêutico , Compostos de Vanádio/química , Vanádio/química , Diabetes Mellitus/tratamento farmacológico , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico
8.
Talanta ; 257: 124345, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791595

RESUMO

Non-transferrin-bound iron (NTBI) is a group of circulating toxic iron forms, which occur in iron overload or health conditions with dysregulation of iron metabolism. NTBI is responsible for increased oxidative stress and tissue iron loading. Despite its relevance as a biochemical marker in several diseases, a standardized assay is still lacking. Several methods were developed to quantify NTBI, but results show high inter-method and even inter-laboratory variability. Thus, the development of a consistent NTBI assay is a major goal in the management of iron overload and related clinical conditions. In this work, a micro sequential injection lab-on-valve (µSI-LOV) method in a solid phase spectrophotometry (SPS) mode was developed for the quantification of NTBI, using a bidentate 3,4-hydroxypyridinone (3,4-HPO) ligand anchored to sepharose beads as a chromogenic reagent. To attain SPS, the functionalized beads were packed into a column in the flow cell, and the analyte, NTBI retained as iron (III), formed a colored complex at the beads while eliminating the sample matrix. The dynamic concentration range was 1.62-7.16 µmol L-1 of iron (III), with a limit of detection of 0.49 µmol L-1 and a limit of quantification of 1.62 µmol L-1. The proposed µSI-LOV-SPS method is a contribution to the development of an automatic method for the quantification of the NTBI in serum samples.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Ferro/metabolismo , Transferrina/metabolismo , Soro/metabolismo , Espectrofotometria
9.
Muscle Nerve ; 66(4): 471-478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894554

RESUMO

INTRODUCTION/AIM: The most common limb girdle muscular dystrophy (LGMD) worldwide is LGMD type R1 (LGMDR1). The aim of this study was to correlate the MRI findings with functional scores and to describe the whole-body MRI (WBMRI) pattern in a LGMDR1 Brazilian cohort. METHODS: LGMDR1 patients under follow-up in three centers were referred for the study. Clinical data were collected and a functional evaluation was performed, consisting of Gardner-Medwin and Walton (GMW) and Brooke scales. All patients underwent a WBMRI study (1.5T) with axial T1 and STIR images. Fifty-one muscles were semiquantitatively assessed regarding fatty infiltration and muscle edema. RESULTS: The study group consisted of 18 patients. The highest fatty infiltration scores involved the serratus anterior, biceps femoris long head, adductor magnus, and lumbar erector spinae. There was a latero-medial and caudo-cranial descending gradient of involvement of the paravertebral muscles, with erector spinae being significantly more affected than the transversospinalis muscles (p < 0.05). A striped appearance that has been dubbed the "pseudocollagen sign" was present in 72% of the patients. There was a positive correlation between the MRI score and GMW (Rho:0.83) and Brooke (Rho:0.53) scores. DISCUSSION: WBMRI in LGMDR1 allows a global patient evaluation including involvement of the paraspinal muscles, usually an underestimated feature in the clinical and imaging study of myopathies. Knowledge of the WBMRI pattern of LGMDR1 involvement can be useful in the diagnostic approach and in future studies to identify the best target muscles to serve as outcome measures in clinical trials.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem
10.
Theranostics ; 12(7): 3150-3177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547758

RESUMO

Rationale: Bladder cancer (BC) management demands the introduction of novel molecular targets for precision medicine. Cell surface glycoprotein CD44 has been widely studied as a potential biomarker of BC aggressiveness and cancer stem cells. However, significant alternative splicing and multiple glycosylation generate a myriad of glycoproteoforms with potentially distinct functional roles. The lack of tools for precise molecular characterization has led to conflicting results, delaying clinical applications. Addressing these limitations, we have interrogated the transcriptome and glycoproteome of a large BC patient cohort for splicing signatures. Methods:CD44 gene and its splicing variants were assessed by Real Time-Polymerase Chain Reaction (RT-PCR) and RNAseq in tumor tissues. The co-localization of CD44 and short O-glycans was evaluated by proximity ligation assay (PLA), immunohistochemistry and double-immunofluorescence. An innovative glycoproteogenomics approach, integrating transcriptomics-customized datasets and glycomics for protein annotation from nanoLC-ESI-MS/MS experiments, was developed and implemented to identify CD44 variants and associated glycosignatures. The impact of CD44 silencing on proliferation and invasion of BC cell lines and glycoengineered cells was determined by BrdU ELISA and Matrigel invasion assays, respectively. Antibody phosphoarrays were used to investigate the role of CD44 and its glycoforms in the activation of relevant oncogenic signaling pathways. Results: Transcriptomics analysis revealed remarkable CD44 isoforms heterogeneity in bladder cancer tissues, as well as associations between short CD44 standard splicing isoform (CD44s), invasion and poor prognosis. We further demonstrated that targeting short O-glycoforms such as the Tn and sialyl-Tn antigens was key to overcome the lack of cancer specificity presented by CD44. Glycoproteogenomics allowed, for the first time, the comprehensive characterization of CD44 splicing code at the protein level. The concept was applied to invasive human BC cell lines, glycoengineered cells, and tumor tissues, enabling unequivocal CD44s identification as well as associated glycoforms. Finally, we confirmed the link between CD44 and invasion in CD44s-enriched cells in vitro by small interfering RNA (siRNA) knockdown, supporting findings from BC tissues. The key role played by short-chain O-glycans in CD44-mediated invasion was also demonstrated through glycoengineered cell models. Conclusions: Overall, CD44s emerged as biomarker of poor prognosis and CD44-Tn/ Sialyl-Tn (STn) as promising molecular signatures for targeted interventions. This study materializes the concept of glycoproteogenomics and provides a key vision to address the cancer splicing code at the protein level, which may now be expanded to better understand CD44 functional role in health and disease.


Assuntos
Neoplasias da Bexiga Urinária , Processamento Alternativo/genética , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Células-Tronco Neoplásicas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária/patologia
11.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335148

RESUMO

In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species' reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.


Assuntos
Sobrecarga de Ferro , Transferrina , Transporte Biológico , Humanos , Ferro/química , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Transferrina/metabolismo
12.
Eur J Neurol ; 29(3): 833-842, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34749429

RESUMO

OBJECTIVES: To present phenotype features of a large cohort of congenital myasthenic syndromes (CMS) and correlate them with their molecular diagnosis. METHODS: Suspected CMS patients were divided into three groups: group A (limb, bulbar or axial weakness, with or without ocular impairment, and all the following: clinical fatigability, electrophysiology compatible with neuromuscular junction involvement and anticholinesterase agents response), group B (limb, bulbar or axial weakness, with or without ocular impairment, and at least one of additional characteristics noted in group A) and group C (pure ocular syndrome). Individual clinical findings and the clinical groups were compared between the group with a confirmed molecular diagnosis of CMS and the group without molecular diagnosis or with a non-CMS molecular diagnosis. RESULTS: Seventy-nine patients (68 families) were included in the cohort: 48 in group A, 23 in group B and 8 in group C. Fifty-one were considered confirmed CMS (30 CHRNE, 5 RAPSN, 4 COL13A1, 3 DOK7, 3 COLQ, 2 GFPT1, 1 CHAT, 1 SCN4A, 1 GMPPB, 1 CHRNA1), 7 probable CMS, 5 non-CMS and 16 unsolved. The chance of a confirmed molecular diagnosis of CMS was significantly higher for group A and lower for group C. Some individual clinical features, alterations on biopsy and electrophysiology enhanced specificity for CMS. Muscle imaging showed at least mild alterations in the majority of confirmed cases, with preferential involvement of soleus, especially in CHRNE CMS. CONCLUSIONS: Stricter clinical criteria increase the chance of confirming a CMS diagnosis, but may lose sensitivity, especially for some specific genes.


Assuntos
Síndromes Miastênicas Congênitas , Biópsia , Estudos de Coortes , Humanos , Músculo Esquelético/patologia , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Fenótipo
13.
Blood Adv ; 5(16): 3102-3112, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34402883

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML. To address this question, we studied iron metabolism in patients with AML at diagnosis and explored the mechanisms involved using the syngeneic MLL-AF9-induced AML mouse model. We found that AML is a disorder with a unique iron profile, not associated with inflammation or transfusion, characterized by high ferritin, low transferrin, high transferrin saturation (TSAT), and high hepcidin. The increased TSAT in particular, contrasts with observations in other cancer types and in anemia of inflammation. Using the MLL-AF9 mouse model of AML, we demonstrated that the AML-induced loss of erythroblasts is responsible for iron redistribution and increased TSAT. We also show that AML progression is delayed in mouse models of systemic iron overload and that elevated TSAT at diagnosis is independently associated with increased overall survival in AML. We suggest that TSAT may be a relevant prognostic marker in AML.


Assuntos
Anemia , Leucemia Mieloide Aguda , Animais , Eritroblastos , Humanos , Ferro , Camundongos , Transferrina
14.
J Exp Clin Cancer Res ; 40(1): 191, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108014

RESUMO

BACKGROUND: Muscle invasive bladder cancer (MIBC) remains amongst the deadliest genitourinary malignancies due to treatment failure and extensive molecular heterogeneity, delaying effective targeted therapeutics. Hypoxia and nutrient deprivation, oversialylation and O-glycans shortening are salient features of aggressive tumours, creating cell surface glycoproteome fingerprints with theranostics potential. METHODS: A glycomics guided glycoproteomics workflow was employed to identify potentially targetable biomarkers using invasive bladder cancer cell models. The 5637 and T24 cells O-glycome was characterized by mass spectrometry (MS), and the obtained information was used to guide glycoproteomics experiments, combining sialidase, lectin affinity and bottom-up protein identification by nanoLC-ESI-MS/MS. Data was curated by a bioinformatics approach developed in-house, sorting clinically relevant molecular signatures based on Human Protein Atlas insights. Top-ranked targets and glycoforms were validated in cell models, bladder tumours and metastases by MS and immunoassays. Cells grown under hypoxia and glucose deprivation disclosed the contribution of tumour microenvironment to the expression of relevant biomarkers. Cancer-specificity was validated in healthy tissues by immunohistochemistry and MS in 20 types of tissues/cells of different individuals. RESULTS: Sialylated T (ST) antigens were found to be the most abundant glycans in cell lines and over 900 glycoproteins were identified potentially carrying these glycans. HOMER3, typically a cytosolic protein, emerged as a top-ranked targetable glycoprotein at the cell surface carrying short-chain O-glycans. Plasma membrane HOMER3 was observed in more aggressive primary tumours and distant metastases, being an independent predictor of worst prognosis. This phenotype was triggered by nutrient deprivation and concomitant to increased cellular invasion. T24 HOMER3 knockdown significantly decreased proliferation and, to some extent, invasion in normoxia and hypoxia; whereas HOMER3 knock-in increased its membrane expression, which was more pronounced under glucose deprivation. HOMER3 overexpression was associated with increased cell proliferation in normoxia and potentiated invasion under hypoxia. Finally, the mapping of HOMER3-glycosites by EThcD-MS/MS in bladder tumours revealed potentially targetable domains not detected in healthy tissues. CONCLUSION: HOMER3-glycoforms allow the identification of patients' subsets facing worst prognosis, holding potential to address more aggressive hypoxic cells with limited off-target effects. The molecular rationale for identifying novel bladder cancer molecular targets has been established.


Assuntos
Biomarcadores/metabolismo , Hipóxia Celular/genética , Glucose/metabolismo , Glicoproteínas/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Proteômica/métodos , Neoplasias da Bexiga Urinária/genética , Proliferação de Células , Humanos , Transfecção , Microambiente Tumoral
15.
Ultrasound Med Biol ; 47(8): 2186-2192, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34049727

RESUMO

The objective of this study was to compare the accuracy of ultrasound (US) with that of magnetic resonance imaging (MRI) in identifying muscle abnormalities in patients with inclusion body myositis (IBM). Twelve patients with IBM underwent muscle US and MRI on the same day. Twelve muscle groups were analyzed per patient. On US, a visual grading system was used to detect whether the muscles were affected. On MRI, muscle atrophy, fat infiltration and edema patterns were analyzed. The inter- and intra-reader reproducibility was similar for US and MRI in the evaluation of muscle abnormalities. All patients with muscle abnormalities identified on US presented with fat infiltration on MRI, which was the most common abnormality identified on MRI. Most importantly, the accuracy of US compared with that of MRI for the detection of muscle abnormalities in patients with IBM was 86.8 (κ coefficient = 0.632), with a sensitivity of 84% and specificity of 100%. In conclusion all patients with muscle abnormalities identified on US presented with fat infiltration on MRI, and the marked increase in echo intensity observed in the muscles of IBM patients was related mostly to fatty replacement. Most importantly, US exhibited significant accuracy compared with MRI.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Miosite de Corpos de Inclusão/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ultrassonografia
16.
Br J Haematol ; 193(3): 637-658, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723861

RESUMO

Increasing evidence suggests that free haem and iron exert vasculo-toxic and pro-inflammatory effects by activating endothelial and immune cells. In the present retrospective study, we compared serum samples from transfusion-dependent patients with ß-thalassaemia major and intermedia, hereditary spherocytosis and sickle cell disease (SCD). Haemolysis, transfusions and ineffective erythropoiesis contribute to haem and iron overload in haemolytic patients. In all cohorts we observed increased systemic haem and iron levels associated with scavenger depletion and toxic 'free' species formation. Endothelial dysfunction, oxidative stress and inflammation markers were significantly increased compared to healthy donors. In multivariable logistic regression analysis, oxidative stress markers remained significantly associated with both haem- and iron-related parameters, while soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble endothelial selectin (sE-selectin) and tumour necrosis factor α (TNFα) showed the strongest association with haem-related parameters and soluble intercellular adhesion molecule 1 (sICAM-1), sVCAM-1, interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) with iron-related parameters. While hereditary spherocytosis was associated with the highest IL-6 and TNFα levels, ß-thalassaemia major showed limited inflammation compared to SCD. The sVCAM1 increase was significantly lower in patients with SCD receiving exchange compared to simple transfusions. The present results support the involvement of free haem/iron species in the pathogenesis of vascular dysfunction and sterile inflammation in haemolytic diseases, irrespective of the underlying haemolytic mechanism, and highlight the potential therapeutic benefit of iron/haem scavenging therapies in these conditions.


Assuntos
Anemia Falciforme/sangue , Heme/metabolismo , Hemoglobinas/metabolismo , Ferro/sangue , Esferocitose Hereditária/sangue , Talassemia beta/sangue , Adolescente , Adulto , Anemia Falciforme/terapia , Transfusão de Sangue , Criança , Pré-Escolar , Endotélio Vascular/metabolismo , Feminino , Humanos , Inflamação/sangue , Molécula 1 de Adesão Intercelular/sangue , Interleucina-6/sangue , Masculino , Esferocitose Hereditária/terapia , Fator de Necrose Tumoral alfa/sangue , Molécula 1 de Adesão de Célula Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Talassemia beta/terapia
17.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562270

RESUMO

Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Transportador de Glucose Tipo 1/metabolismo , Proteoma/análise , Software , Antígenos Glicosídicos Associados a Tumores/química , Apoptose , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/química , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas
18.
J Neuromuscul Dis ; 8(1): 101-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33074187

RESUMO

BackgroundSpinal muscular atrophy (SMA) is a motor neuron disease associated with progressive muscle weakness and motor disability.ObjectiveThis study aims to report the evaluation of nusinersen, an antisense oligonucleotide, on motor function in patients with SMA types 2 and 3.MethodsThis single-center retrospective observational study assessed nusinersen therapy outcomes, measured by HSMFSE or CHOP-INTEND scales, in patients with SMA types 2 and 3, compared to untreated patients, for at least 24 months.ResultsA total of 41 patients with SMA types 2 and 3 under nusinersen treatment were included. In 30 treated patients (mean age: 10.6 years; 14 with SMA type 2), the mean change in HFMSE scores was +1.47 points (SD = 0.4) and +1.60 points (SD = 0.6) after 12 and 24 months of treatment, respectively. In contrast, the control group (N = 37) (mean age: 10.2 years; 20 with SMA type 2) presented a mean change of -1.71 points (SD = 0.02) and -3.93 points (SD = 0.55) after 12 and 24 months of follow-up, respectively. The most severe patients under nusinersen treatment (N = 11) showed a change of +2.37 (SD = 1.13) on the CHOP-INTEND scale after 12 months of follow-up. Disease duration at the beginning of treatment was the main predictor of functional improvement. Despite functional gain and motor stabilization, treatment with nusinersen did not prevent the progression of scoliosis.ConclusionsOur data provide evidence for the long-term safety and efficacy of nusinersen use in the treatment of later-onset SMA, and patients with shorter disease duration showed better response to treatment.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Masculino , Oligonucleotídeos/administração & dosagem , Estudos Retrospectivos
19.
Front Neurol ; 11: 1053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013676

RESUMO

Myasthenia gravis (MG), an autoimmune neuromuscular disorder, may be a risk factor for severe COVID-19. We conducted an observational retrospective study with 15 consecutive adult MG patients admitted with COVID-19 at four hospitals in São Paulo, Brazil. Most patients with MG hospitalized for COVID-19 had severe courses of the disease: 87% were admitted in the intensive care unit, 73% needed mechanical ventilation, and 30% died. Immunoglobulin use and the plasma exchange procedure were safe. Immunosuppressive therapy seems to be associated with better outcomes, as it might play a protective role.

20.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252346

RESUMO

BACKGROUND: Gastric cancer (GC) is a major health burden worldwide, with half of patients developing metastases within 5 years after treatment, urging novel biomarkers for diagnosis and efficient therapeutic targeting. Sialyl-Lewis A (SLeA), a terminal glycoepitope of glycoproteins and glycolipids, offers tremendous potential towards this objective. It is rarely expressed in healthy tissues and blood cells, while it is present in highly metastatic cell lines and metastases. SLeA is also involved in E-selectin mediated metastasis, making it an ideal target to control disease dissemination. METHODS AND RESULTS: To improve cancer specificity, we have explored the SLeA-glycoproteome of six GC cell models, with emphasis on glycoproteins showing affinity for E-selectin. A novel bioinformatics-assisted algorithm identified nucleolin (NCL), a nuclear protein, as a potential targetable biomarker potentially involved in metastasis. Several immunoassays, including Western blot and in situ proximity ligation reinforced the existence of cell surface NCL-SLeA glycoforms in GC. The NCL-SLeA glycophenotype was associated with decreased survival and was not reflected in relevant healthy tissues. CONCLUSIONS: NCL-SLeA is a biomarker of poor prognosis in GC holding potential for precise cancer targeting. This is the first report describing SLeA in preferentially nuclear protein, setting a new paradigm for cancer biomarkers discovery and targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...