Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 16: 1601-1616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688181

RESUMO

INTRODUCTION: Cancer is the second leading cause of death globally and is responsible, where about 1 in 6 deaths in the world. Therefore, there is a need to develop effective antitumor agents that are targeted only to the specific site of the tumor to improve the efficiency of cancer diagnosis and treatment and, consequently, limit the unwanted systemic side effects currently obtained by the use of chemotherapeutic agents. In this context, due to its unique physical and chemical properties of graphene oxide (GO), it has attracted interest in biomedicine for cancer therapy. METHODS: In this study, we report the in vivo application of nanocomposites based on Graphene Oxide (nc-GO) with surface modified with PEG-folic acid, Rhodamine B and Indocyanine Green. In addition to displaying red fluorescence spectra Rhodamine B as the fluorescent label), in vivo experiments were performed using nc-GO to apply Photodynamic Therapy (PDT) and Photothermal Therapy (PTT) in the treatment of Ehrlich tumors in mice using NIR light (808 nm 1.8 W/cm2). RESULTS: This study based on fluorescence images was performed in the tumor in order to obtain the highest concentration of nc-GO in the tumor as a function of time (time after intraperitoneal injection). The time obtained was used for the efficient treatment of the tumor by PDT/PTT. DISCUSSION: The current study shows an example of successful using nc-GO nanocomposites as a theranostic nanomedicine to perform simultaneously in vivo fluorescence diagnostic as well as combined PDT-PTT effects for cancer treatments.


Assuntos
Grafite/química , Fotoquimioterapia , Terapia Fototérmica , Nanomedicina Teranóstica , Adsorção , Animais , Benzofuranos/química , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/terapia , Humanos , Verde de Indocianina/farmacologia , Masculino , Camundongos , Nanocompostos/química , Tamanho da Partícula , Rodaminas/farmacologia , Espectrometria de Fluorescência , Análise Espectral Raman , Eletricidade Estática , Carga Tumoral
2.
Nanoscale ; 10(28): 13315-13319, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29972186

RESUMO

The rich plasmon resonance modes and local field enhancements of two-dimensional (2D) noble metal nanostructures have boosted their application in distinct areas like catalysis, photonics, medicine and sensing. Here, we develop a unique strategy for the controlled growth of asymmetric 2D gold nanostructures in aqueous media using graphene oxide as a template. By performing mild reduction of gold ions on the surface of Au seeds (∼2 nm) attached to graphene oxide nanosheets, the anisotropic growth of 2D gold nanostructures can be carried out through a simple procedure with a tunable control of the final size, shape and thickness, and consequently on their optical properties, without using surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...