Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 661494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248477

RESUMO

Introduction: The field of brain-machine interfaces (BMI) for upper limb (UL) orthoses is growing exponentially due to improvements in motor performance, quality of life, and functionality of people with neurological diseases. Considering this, we planned a systematic review to investigate the effects of BMI-controlled UL orthoses for rehabilitation of patients with neurological disorders. Methods: This systematic review and meta-analysis protocol was elaborated according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P 2015) and Cochrane Handbook for Systematic Reviews of Interventions. A search will be conducted on Pubmed, IEEE Xplore Digital Library, Medline, and Web of Science databases without language and year restrictions, and Patents Scope, Patentlens, and Google Patents websites in English, Spanish, French, German, and Portuguese between 2011 and 2021. Two independent reviewers will include randomized controlled trials and quasi-experimental studies using BMI-controlled active UL orthoses to improve human movement. Studies must contain participants aged >18 years, diagnosed with neurological disorders, and with impaired UL movement. Three independent reviewers will conduct the same procedure for patents. Evidence quality and risk of bias will be evaluated following the Cochrane collaboration by two review authors. Meta-analysis will be conducted in case of homogeneity between groups. Otherwise, a narrative synthesis will be performed. Data will be inserted into a table containing physical description, UL orthoses control system, and effect of BMI-controlled orthoses. Discussion: BMI-controlled orthoses can assist individuals in several routine activities and provide functional independence and sense of overcoming limitations imposed by the underlying disease. These benefits will also be associated with orthoses descriptions, safety, portability, adverse events, and tools used to assess UL motor performance in patients with neurological disorders. PROSPERO Registration Number: CRD42020182195.

2.
Gait Posture ; 54: 229-235, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28351743

RESUMO

The addition of load on the non-paretic lower limb for the purpose of restraining this limb and stimulating the use of the paretic limb has been suggested to improve hemiparetic gait. However, the results are conflicting and only short-term effects have been observed. This study aims to investigate the effects of adding load on non-paretic lower limb during treadmill gait training as a multisession intervention on kinematic gait parameters after stroke. With this aim, 38 subacute stroke patients (mean time since stroke: 4.5 months) were randomly divided into two groups: treadmill training with load (equivalent to 5% of body weight) on the non-paretic ankle (experimental group) and treadmill training without load (control group). Both groups performed treadmill training during 30min per day, for two consecutive weeks (nine sessions). Spatiotemporal and angular gait parameters were assessed by a motion system analysis at baseline, post-training (at the end of 9days of interventions) and follow-up (40days after the end of interventions). Several post-training effects were demonstrated: patients walked faster and with longer paretic and non-paretic steps compared to baseline, and maintained these gains at follow-up. In addition, patients exhibited greater hip and knee joint excursion in both limbs at post-training, while maintaining most of these benefits at follow-up. All these improvements were observed in both groups. Although the proposal gait training program has provided better gait parameters for these subacute stroke patients, our data indicate that load addition used as a restraint may not provide additional benefits to gait training.


Assuntos
Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Marcha/fisiologia , Extremidade Inferior/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Caminhada , Suporte de Carga , Adulto , Idoso , Análise de Variância , Fenômenos Biomecânicos , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Paresia/reabilitação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...