Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38922465

RESUMO

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Lactuca , Phaseolus , Estrobilurinas , Phaseolus/efeitos dos fármacos , Estrobilurinas/toxicidade , Benzimidazóis/toxicidade , Fungicidas Industriais/toxicidade , Carbamatos/toxicidade , Lactuca/efeitos dos fármacos , Pirimidinas/toxicidade , Clorofila/metabolismo
2.
Environ Sci Pollut Res Int ; 30(60): 125388-125397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001291

RESUMO

Pesticides are compounds with several chemical or biological agents developed to potentiate the biocide action. Their use is associated with increased economic and agricultural productivity worldwide but can harm health and the environment, damaging existing biota. Clethodim is a systemic post-emergent herbicide for grasses, highly selective for cotton, coffee, onions, carrots, soybeans, etc. Therefore, this work aimed to evaluate the harmful effect of the herbicide Clethodim with the model plant Allium cepa. A series of tests were conducted to evaluate the effects of the herbicide under study. Germination tests, root growth, cell, and nucleolar cycle analysis, as well as oxidative stress assessment and histological analysis of the roots, were performed. The results indicated that the herbicide demonstrated phytotoxicity, inhibiting germination at C1 (1.92 g/L) and C3 (0.84 g/L), and root growth at all concentrations, presenting mutagenicity at C1 (1.92 g/L) and C4 (0.24 g/L), evidenced by the increased frequency of micronuclei. In addition, changes were observed in the enzymatic activity of the enzymes catalase at concentrations C1 (1.92 g/L) and C2 (0.96 g/L) and ascorbate peroxidase at concentrations C1 (1.92 g/L), C2 (0. 96 g/L), and C3 (0.48 g/L) and in cell elongation at concentrations C1 (1.92 g/L) and C3 (0.48 g/L), demonstrated in histological analyses of the root apex.


Assuntos
Herbicidas , Cebolas , Herbicidas/metabolismo , Raízes de Plantas/metabolismo , Toxicogenética , Dano ao DNA
3.
Toxicology ; 493: 153548, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207816

RESUMO

One of the major challenges in chemical toxicity testing is the possibility to protect human health against adverse effects with non-animal methods. In this paper, 4-Octylphenol (OP) was tested for skin sensitization and immunomodulatory effects using an integrated in silico-in vitro test approach. In silico tools (QSAR TOOLBOX 4.5, ToxTree and VEGA) were used together with several in vitro tests including HaCaT cells (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA and expression of genes TNF, IL1A, IL6 and IL8 by RT- qPCR), RHE model (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA) and THP-1 activation assay (CD86/CD54 expression and IL-8 release). Additionally, the immunomodulatory effect of OP was investigated using lncRNAs MALAT1 and NEAT1 expression and LPS-induced THP-1 activation (CD86/CD54 expression and IL-8 release). The in silico tools predicted OP as a sensitizer. In vitro tests are also concordant with the in silico prediction. OP increased IL-6 expression (HaCaT cells); IL-18 and IL-8 expressions (RHE model). An irritant potential was also shown by a great expression of IL-1α (RHE model); and increased expression of CD54 marker and IL-8 in THP-1 cells. Immunomodulatory effects of OP were demonstrated by the downregulation of NEAT1, MALAT1 (epigenetic markers), IL6 and IL8; and an increase in LPS-induced CD54 and IL-8 expressions. Overall, results indicate that OP is a skin sensitizer, being positive in three key events of the AOP for skin sensitization, also showing immunomodulatory effects.


Assuntos
Interleucina-8 , RNA Longo não Codificante , Humanos , Interleucina-8/genética , Interleucina-18/farmacologia , Interleucina-6 , Lipopolissacarídeos/toxicidade , Antígeno B7-2/metabolismo , Antígeno B7-2/farmacologia , Pele , Alérgenos
4.
Arch Toxicol ; 95(11): 3459-3473, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34436642

RESUMO

Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.


Assuntos
Exposição Ambiental/análise , Retardadores de Chama , Pele , Humanos , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...