Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 188: 106508, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379779

RESUMO

Miconazole-loaded nanoparticles coated with hyaluronic acid (miconazole-loaded nanoparticles/HA) were developed to overcome the limitations of the conventional therapy of the vulvovaginal candidiasis (VVC). They were synthesized by emulsification and solvent evaporation techniques, characterized by diameter, polydispersity index, zeta potential, encapsulation efficiency, atomic force microscopy (AFM), evaluated in terms of efficacy against C. albicans in vitro, and tested in a murine VVC model. Nanoparticles showed 211nm of diameter with a 0.32 polydispersity index, -53mV of zeta potential, and 90% miconazole encapsulation efficiency. AFM evidenced nanoparticles with a spherical shape. They inhibited the proliferation of C. albicans in vitro and in vivo after a single administration. Nanoparticles released the miconazole directly in the site of action at low therapeutic doses, which was enough to eliminate the fungal burden in the murine VVC model. These systems were rationally designed since the existence of the HA induces their adhesion on the vaginal mucus and their internalization via CD44 receptors, inhibiting the C. albicans. Therefore, miconazole-loaded nanoparticles/HA represent an innovative non-conventional pharmaceutical dosage form to treat the VVC and recurrent VVC.


Assuntos
Candidíase Vulvovaginal , Nanopartículas , Humanos , Feminino , Camundongos , Animais , Miconazol/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Ácido Hialurônico , Antifúngicos , Candida albicans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...