Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 27(19): 2686-92, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17998933

RESUMO

Histone methylation is involved in the regulation of gene expression and DNA replication through alteration of chromatin structure. We earlier showed that SMYD3, a histone H3-lysine 4-specific methyltransferase, is frequently upregulated in human colorectal, liver and breast cancer compared to their matched non-cancerous cells, and that its activity is associated with the growth of these tumors. In the present study, we found that human cancer cells express both the full-length and a cleaved form of SMYD3 protein. Amino acid sequence analysis uncovered that the cleaved form lacks the 34 amino acids in the N-terminal region of the full-length protein. Interestingly, the cleaved protein and mutant protein containing substitutions at glycines 15 and 17, two highly conserved amino acids in the N-terminal region, revealed a higher histone methyltransferase (HMTase) activity compared to the full-length protein. Furthermore, the N-terminal region is responsible for the association with heat shock protein 90alpha (HSP90alpha). These data indicate that the N-terminal region plays an important role for the regulation of its methyltransferase activity and suggest that a structural change of the protein through the cleavage of the region or interaction with HSP90alpha may be involved in the modulation. These findings may help for a better understanding of the mechanisms that modulate the HMTase activity of SMYD3, and contribute to the development of novel anticancer drugs targeting SMYD3 methyltransferase activity.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Histona-Lisina N-Metiltransferase/química , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA