Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur j. pharm. sci. ; 136: 104952, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16134

RESUMO

Antimicrobial peptides (AMPs) are biologically active molecules with a broad-spectrum activity against a myriad of microorganisms. Aside from their antimicrobial functions, AMPs present physicochemical and structural properties that allow them to exert activity against other kind of cells, such as cancer cells. VmCT1 is a potent cationic amphipathic AMP from the venom of the scorpion Vaejovis mexicanus. In this study, we designed lysine-substituted VmCT1 analogs for verifying the influence of changes in the net positive charge on biological activities. The increase in the net positive charge caused by lysine substitutions in the hydrophilic portion, led to higher antimicrobial activity values (0.1–6.3?µmol?L-1) than VmCT1 (0.8–50?µmol?L-1) and higher activity against mammary cancer cells MCF-7 (6.3–12.5?µmol?L-1) than VmCT1 (12.5?µmol?L-1). Contrarily, when lysine-substitutions were made at the hydrophobic portion of the helical projection, the activity values decreased. However, the lysine-substitution at the center of the hydrophobic face led to the generation of an analog with antiplasmodial activity at the same concentration presented by VmCT1 (0.8?µmol?L-1). In this study, we demonstrated that it is possible to modulate biological activities and cytotoxicity of VmCT1 peptides by increasing their net positive charge using lysine residues, thus creating alternatives for standard-of-care therapeutics against different types of microorganisms and MCF-7 human breast cancer cells.

2.
Bioorg. chem. ; 90(Sept.): 103038, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16047

RESUMO

VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 µmol L-1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 µmol L-1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.

3.
Eur J Pharm Sci, v. 136, 104952, aug. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2809

RESUMO

Antimicrobial peptides (AMPs) are biologically active molecules with a broad-spectrum activity against a myriad of microorganisms. Aside from their antimicrobial functions, AMPs present physicochemical and structural properties that allow them to exert activity against other kind of cells, such as cancer cells. VmCT1 is a potent cationic amphipathic AMP from the venom of the scorpion Vaejovis mexicanus. In this study, we designed lysine-substituted VmCT1 analogs for verifying the influence of changes in the net positive charge on biological activities. The increase in the net positive charge caused by lysine substitutions in the hydrophilic portion, led to higher antimicrobial activity values (0.1–6.3?µmol?L-1) than VmCT1 (0.8–50?µmol?L-1) and higher activity against mammary cancer cells MCF-7 (6.3–12.5?µmol?L-1) than VmCT1 (12.5?µmol?L-1). Contrarily, when lysine-substitutions were made at the hydrophobic portion of the helical projection, the activity values decreased. However, the lysine-substitution at the center of the hydrophobic face led to the generation of an analog with antiplasmodial activity at the same concentration presented by VmCT1 (0.8?µmol?L-1). In this study, we demonstrated that it is possible to modulate biological activities and cytotoxicity of VmCT1 peptides by increasing their net positive charge using lysine residues, thus creating alternatives for standard-of-care therapeutics against different types of microorganisms and MCF-7 human breast cancer cells.

4.
Bioorg Chem, v. 90, 103038, set. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2772

RESUMO

VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 µmol L-1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 µmol L-1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.

5.
J. Pept. Sci. ; 23(11): 818-823, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17768

RESUMO

Linear cationic a-helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine-substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic a-helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10-Dec-NH2 analog showed similar activity against different microorganisms (c.a. 0.4–0.8 µmol L-1), helical structuration, and some hemolytic activity, [Leu]8-Dec-NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 µmol L-1). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...