Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 30: 101276, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35592614

RESUMO

Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network.

2.
Front Oncol ; 11: 740796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858819

RESUMO

The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.

3.
Elife ; 72018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989547

RESUMO

The highly polymorphic human leukocyte antigen (HLA) class I molecules present peptide antigens to CD8+ T cells, inducing immunity against infections and cancers. Quality control mediated by peptide loading complex (PLC) components is expected to ensure the cell surface expression of stable peptide-HLA class I complexes. This is exemplified by HLA-B*08:01 in primary human lymphocytes, with both expression level and half-life at the high end of the measured HLA-B expression and stability hierarchies. Conversely, low expression on lymphocytes is measured for three HLA-B allotypes that bind peptides with proline at position 2, which are disfavored by the transporter associated with antigen processing. Surprisingly, these lymphocyte-specific expression and stability differences become reversed or altered in monocytes, which display larger intracellular pools of HLA class I than lymphocytes. Together, the findings indicate that allele and cell-dependent variations in antigen acquisition pathways influence HLA-B surface expression levels, half-lives and receptivity to exogenous antigens.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Variação Genética , Antígenos HLA-B/imunologia , Fragmentos de Peptídeos/imunologia , Anticorpos Monoclonais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação da Expressão Gênica , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Meia-Vida , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo
4.
J Biol Chem ; 288(6): 3816-22, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23258533

RESUMO

Many bacteria lack genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase and consequently rely on an indirect path for the synthesis of both Asn-tRNA(Asn) and Gln-tRNA(Gln). In some bacteria such as Thermus thermophilus, efficient delivery of misacylated tRNA to the downstream amidotransferase (AdT) is ensured by formation of a stable, tRNA-dependent macromolecular complex called the Asn-transamidosome. This complex enables direct delivery of Asp-tRNA(Asn) from the non-discriminating aspartyl-tRNA synthetase to AdT, where it is converted into Asn-tRNA(Asn). Previous characterization of the analogous Helicobacter pylori Asn-transamidosome revealed that it is dynamic and cannot be stably isolated, suggesting the possibility of an alternative mechanism to facilitate assembly of a stable complex. We have identified a novel protein partner called Hp0100 as a component of a stable, tRNA-independent H. pylori Asn-transamidosome; this complex contains a non-discriminating aspartyl-tRNA synthetase, AdT, and Hp0100 but does not require tRNA(Asn) for assembly. Hp0100 also enhances the capacity of AdT to convert Asp-tRNA(Asn) into Asn-tRNA(Asn) by ∼35-fold. Our results demonstrate that bacteria have adopted multiple divergent methods for transamidosome assembly and function.


Assuntos
Amidinotransferases/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , Complexos Multienzimáticos/metabolismo , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Amidinotransferases/genética , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Complexos Multienzimáticos/genética , RNA Bacteriano/genética , Aminoacil-RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...