RESUMO
This study evaluated the effect of solutions containing aminomethacrylate copolymer (AA) and sodium fluoride (F; 225 ppm F-) or fluoride plus stannous chloride (FSn; 225 ppm F-, 800 ppm Sn2+) against enamel and dentin erosion/abrasion. Solutions F, FSn, AA, F+AA, FSn+AA, and deionized water as negative control were tested. Bovine enamel and dentin specimens (n = 13/solution/substrate) underwent a set of erosion-abrasion cycles (0.3% citric acid [5 min, 4×/day], human saliva [1 h, 4×/day], brushing [15 s, 2×/day], and treatments [2 min, 2×/day]) for each of five days. Initial enamel erosion was evaluated using Knoop microhardness after the first and second acid challenge on day 1, and surface loss with profilometry after day 5. KOH-soluble fluoride was assessed. Data were analyzed with ANOVA/Tukey tests. The combination of fluoride and AA resulted in higher protection against enamel erosion, whereas this was not the case for the combination of AA and FSn. All treatments protected against enamel and dentin loss. The lowest surface loss values were observed with F+AA and FSn+AA. The polymer did not significantly influence the KOH-soluble fluoride formation on enamel/dentin specimens. The aminomethacrylate copolymer effectively enhanced the efficacy of sodium fluoride against initial erosion and improved the control of enamel and dentin wear of F and FSn solutions.
Assuntos
Esmalte Dentário , Dentina , Fluoreto de Sódio , Abrasão Dentária , Erosão Dentária , Erosão Dentária/prevenção & controle , Bovinos , Esmalte Dentário/efeitos dos fármacos , Dentina/efeitos dos fármacos , Animais , Fluoreto de Sódio/uso terapêutico , Fluoreto de Sódio/farmacologia , Humanos , Abrasão Dentária/prevenção & controle , Abrasão Dentária/etiologia , Saliva/efeitos dos fármacos , Saliva/química , Fluoretos de Estanho/uso terapêutico , Cariostáticos/farmacologia , Cariostáticos/uso terapêutico , Dureza , Fluoretos/uso terapêutico , Ácido Cítrico/farmacologia , Ácido Cítrico/efeitos adversos , Escovação Dentária , Compostos de Potássio/uso terapêutico , Hidróxidos , Metacrilatos , Compostos de EstanhoRESUMO
The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.
Assuntos
Nanoestruturas , Termodinâmica , Adsorção , Nanoestruturas/química , Analgésicos/química , Grafite/química , Poluentes Químicos da Água/química , Carbono/químicaRESUMO
Herein, graphene oxide was used as the highly efficient phenazopyridine adsorbent from aqueous medium, synthetic, and human urine. The nanoadsorbent was characterized by different instrumental techniques. The adsorption capacity (1253.17 mg g-1) was reached at pH 5.0, using an adsorbent dosage of 0.125 g L-1 at 298 K. The Sips and Langmuir described the equilibrium data well. At the same time, the pseudo-second order was more suitable for fitting the kinetic data. Thermodynamic parameters revealed the exothermic nature of adsorption with an increase in randomness at the solid-liquid interface. The magnitude of the enthalpy variation value indicates that the process involves the physisorption phenomenon. At the same time, ab initio molecular dynamics data corroborated with the thermodynamic results, indicating that adsorbent and adsorbate establish hydrogen bonds through the amine groups (adsorbate) and hydroxyl groups on the adsorbent surface (weak interactions). Electrostatic interactions are also involved. Additionally, the adsorption assays conducted in simulated medium and human urine showed the excellent performance of adsorbent material to remove the drug in real concentrations excreted by the kidneys (removal values higher than 60%).
Assuntos
Grafite , Fenazopiridina , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Adsorção , Fenazopiridina/química , Fenazopiridina/urina , Humanos , Poluentes Químicos da Água/química , Cinética , Teoria da Densidade Funcional , Purificação da Água/métodos , Urina/químicaRESUMO
Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site ( n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.
Assuntos
Ácidos Carboxílicos , Café , Polímeros , Adsorção , Café/química , Ácidos Carboxílicos/química , Polímeros/química , Cinética , Cicloexanos/química , Poluentes Químicos da Água/química , TermodinâmicaRESUMO
Herein, we demonstrate the prospects of tackling several environmental problems by transforming a local rice husk residue into an effective adsorbent, which was then applied for the treatment of real landfill leachate (LL). The study focused on establishing (i) the effect of simple washing on morphological aspects, (ii) evaluating target adsorption capacity for total iron (Fe) and nickel (Ni), (iii) determining regeneration and reuse potential of the adsorbent and (iv) complying to the requirements of worldwide legislations for reuse of treated LL wastewater. The adsorbent was prepared by employing a simple yet effective purification process that can be performed in situ. The LL was collected post-membrane treatment, and the characterizations revealed high concentrations of Fe, Ni, and organic matter content. The simple washing affected the crystallinity, resulting in structural alterations of the adsorbents, also increasing the porosity and specific surface. The adsorption process for Ni occurred naturally at pH 6, but adjusting the pH to 3 significantly improved removal efficiency and adsorption capacity for total Fe. The kinetics were accurately described by the pseudo-second-order model, while the Langmuir model provided a better fit for the isotherms. The adsorbent was stable for 5 reuses, and the metals adsorbed were recovered through basic leaching. The removal capacities achieved underscore the remarkable effectiveness of the process, ensuring the treated LL wastewater meets rigorous global environmental legislations for safe use in irrigation. Thus, by employing the compelling methods herein optimized it is possible to refer to the of solving three environmental problems at once.
Assuntos
Ferro , Níquel , Oryza , Poluentes Químicos da Água , Níquel/química , Oryza/química , Adsorção , Ferro/química , Poluentes Químicos da Água/química , Cinética , Águas Residuárias/químicaRESUMO
In this work, the adsorption of nickel ions from a real effluent from a metal-mechanic industry was investigated in a fixed-bed column using biochar. Biochar was prepared from winemaking residues originating from the Beifiur® composting process. The use of wine industry residues as precursor materials for biochar production is established in biomass residue valorization using the existing logistics and the lowest possible number of manipulations and pre-treatments. The results found in the work showed that the optimal conditions for nickel adsorption in fixed-bed columns were bed height (Z) of 7 cm, initial nickel concentration (C0) of 1.5 mg L-1, and flow rate (Q) of 18 mL min-1. In this condition, the maximum adsorption capacity of the column was 0.452 mg g-1, the mass transfer zone (Zm) was 3.3 cm, the treated effluent volume (Veff) was 9.72 L, and the nickel removal (R) was 92.71%. The Yoon-Nelson and BDST dynamic models were suitable to represent the breakthrough curves of nickel adsorption. Finally, the fixed-bed column adsorption using biochar from winemaking residues proved to be a promising alternative for nickel removal from real industrial effluents.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Níquel/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/análiseRESUMO
The present research aimed to evaluate the use of grape stalk in the adsorption of lanthanum and cerium to identify the best operating conditions enabling the application of the bioadsorbent in REEs leached from phosphogypsum. The grape stalk was characterized and showed an amorphous structure with a heterogeneous and very porous surface. Also, it was possible to identify the groups corresponding to carboxylic acids, phenols, alcohols, aliphatic acids, and aromatic rings. The pH effect study showed that the adsorption process of La3+ and Ce3+ ions was favored at pH 5.0. The adsorption kinetics followed the pseudo-second-order model. In just 20 min, 80% saturation was reached, while equilibrium was reached after 120 min. The adsorption isotherms were appropriately adjusted to the Langmuir model, and the maximum adsorption capacities were obtained at 298 K, which were 35.22 mg g-1 for La3+ and 37.99 mg g-1 for Ce3+. Furthermore, the adsorption process was favorable, spontaneous, and exothermic. In the study's second phase, phosphogypsum was leached with a sulfuric acid solution. Then, the adsorption of REEs was carried out under the experimental conditions of pH after leaching and pH 5.0 (adjustment carried out with sodium hydroxide solution) at 298 K for 120 min and with adsorbent dosages of 1 and 5 g L-1. This process resulted in removal percentages above 95% for the most abundant REEs, such as neodymium, lanthanum, and cerium, at pH 5.0 and a dosage of 5 g L-1, demonstrating the effectiveness of the bioadsorbent used. These results indicate the potential of using grape residue as a promising bioadsorbent in recovering rare earth elements from phosphogypsum leachate.
Assuntos
Cério , Vitis , Poluentes Químicos da Água , Lantânio/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/químicaRESUMO
Graphene-based materials have increasingly attracted attention in recent years. It is a material is recognized worldwide due to its numerous applications in several sectors. However, graphene production involves several challenges: scalability, high costs, and high-quality production. This study synthesized graphene-like porous carbon nanosheets (GPCNs) through a thermochemical process under a nitrogen atmosphere using grape bagasse as a precursor. Three temperatures (700, 800, and 900 ºC) of the pyrolysis process were studied. Chemical graphitization and activation were used to form high-specific surface area materials: FeCl3.6H2O(aq) and ZnCl2(s) in a simultaneous activation-graphitization (SAG) method. The materials obtained (GPCN700, GPCN800, and GPCN900) were compared to previously produced chars (C700, C800, and C900). A high specific surface area and total pore volume were obtained for GPCN materials, and GPCN900 presented the highest values: 1062.7 m2g-1 and 0.635 cm3 g-1, respectively. The GPCN and char materials were classified as mesoporous and applied as adsorbents for CO2(g). The GPCN800 presented the best CO2(g) adsorbent, with a CO2(g) adsorption capacity of 168.71 mg g-1.
Assuntos
Grafite , Vitis , Carbono , Dióxido de Carbono , PorosidadeRESUMO
Grain cultivation and its impacts on the environment have been the focus of many studies, especially due to generated solid waste and the wide use of agrochemicals aiming for greater productivity. In this context, the present study proposes a new and consistent step in constructing self-sustainability in rice farming. The proposed stage includes reusing green silica waste as an adsorbent to treat effluents contaminated by pesticides directly applied to rice cultivation. After nano silica production through the rice husks burning, followed by basic leaching and acid precipitation, a carbonaceous material remains. This material, naturally impregnated by Na2SiO3, was washed and dried, characterized, and used to remove the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The adsorption essays were performed at 2,4-D at low concentrations (between 1 and 10 mg L-1) at different temperatures. The washed and dried porous carbon (WDPC) surface is irregular and presents slit-shaped channels. The FT-IR analysis identified the siloxane, carbonyl, carboxylate, and methylene functional groups available to interact with the pesticide molecules. The washing/drying process eliminated impurities, improving the surface area from 539.67 to 619.67 cm2 g-1 and pore volume from 0.29 to 0.44 cm3 g-1. Concerning the adsorption of 2,4-D on WDPC, the best pH was 6.0, where around 75% of the pesticide was removed from the water. The equilibrium isotherms presented an S-shaped form indicating a multilayer and cooperative adsorption, with maximum adsorption capacities of 7.504 and 7.736 mg g-1. The estimated ∆Gads, ΔHads, and ΔSads values suggested that pesticide adsorption was spontaneous, exothermic, and favorable. Finally, WDPC demonstrated a good potential to uptake 2,4-D from water, contributing to self-sustainability in rice farming.
RESUMO
This study was intended to valorize a floated sludge of a poultry slaughterhouse using it as a precursor to producing char and activated carbon, which were tested as adsorbents in removing ketoprofen and diclofenac sodium from the water. The addition of zinc chloride or calcium hydroxide was determinant for forming a porous carbonaceous structure with a high surface area in AC-FSP (656.54 m2 g-1), differently from that exhibited by the CHAR-FSP (8.11 m2 g-1). Kinetic and equilibrium studies indicated that the pseudo-second-order and the Sips models were suitable. The AC- FSP maximum adsorption capacity for ketoprofen and diclofenac sodium was 124.98 mg g-1 and 138.32 mg g-1, respectively. The adsorption was a spontaneous and endothermic process. It was concluded that AC-FSP is a more efficient and promising adsorbent than CHAR-FSP for the adsorption of drugs in contaminated wastewater. In addition, AC-FSP can be reused, maintaining good adsorption levels for about 5 cycles. Therefore, this study is aligned with the 2030 Agenda for global sustainability since converting waste (valueless) into an adsorbent is also directly linked to the circular economy and neutral carbon.
Assuntos
Cetoprofeno , Poluentes Químicos da Água , Animais , Esgotos , Diclofenaco , Carvão Vegetal/química , Adsorção , Aves Domésticas , Poluentes Químicos da Água/análise , Cinética , Preparações Farmacêuticas , Concentração de Íons de HidrogênioRESUMO
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Assuntos
Grafite , Metformina , Nanocompostos , Poluentes Químicos da Água , Adsorção , Propranolol , Cloroquina , Água , Fenômenos Magnéticos , Preparações Farmacêuticas , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de HidrogênioRESUMO
OBJECTIVE: To investigate if an aminomethacrylate copolymer (AMC) could potentiate the anti-erosive effect of solutions containing sodium fluoride -F (225â¯ppm F-) and sodium fluoride associated to stannous chloride -FS (800â¯ppm Sn2+). METHODS: The experimental solutions (F, FS, AMC, AMCâ¯+â¯F, AMCâ¯+â¯FS, and deionized water-DW as negative control) were tested in the presence of acquired pellicle. Polished bovine enamel specimens (nâ¯=â¯13/group) were submitted to an erosion-rehardening cycle (2â¯h immersion in human saliva, 5â¯min in 0.3 % citric acid, 1â¯h in human saliva, 4×/day, 5 days). Treatment with the solutions was performed for 2â¯min, 2×/day. The rehardening (%Re) and protective (%Prot) potential of the solutions were assessed in the beginning of the experiment, and the surface loss (SL) by contact profilometry after 5 days. Additional bovine specimens (nâ¯=â¯5/group) were prepared to evaluate the contact angle on the treated enamel surface. The zeta potential of the dispersed hydroxyapatite (HA) crystals after the treatment with the solutions was also measured (nâ¯=â¯3/group). Data were statistically analyzed (αâ¯=â¯0.05). RESULTS: The association with AMC improved the %Re and the %Prot for W and F, but not for FS. The results of SL were: AMCâ¯+â¯F = AMCâ¯+â¯FSâ¯<â¯AMCâ¯<â¯FSâ¯<â¯Fâ¯<â¯DW. The presence of AMC significantly reduced the contact angle on enamel surfaces. The HA presented a strong negative surface charge after the treatment with DW, F and FS, whereas after the treatment with the solutions containing AMC it became positive. CONCLUSION: AMC has potential to enhance the anti-erosive effect of fluoride solutions. CLINICAL SIGNIFICANCE: The aminomethacrylate copolymer (AMC) may be a promising agent to be added to oral care products for the prevention of erosive tooth wear.
Assuntos
Erosão Dentária , Animais , Bovinos , Esmalte Dentário , Película Dentária , Fluoretos , Humanos , Fluoreto de Sódio/farmacologia , Erosão Dentária/prevenção & controleRESUMO
Health risks caused by exposure to black carbon (BC) and nanoparticles (NP) are well studied, although no standard currently exists for them worldwide. Exposure to children may lead to serious health effects due to their increased vulnerability and longer time spend inside the classrooms, making it important to assess the factors that affect air quality in preschools. Thus, this work aims to evaluate indoor-outdoor (I/O) relationships of NPs in the 10-420 nm range, BC and volatile organic compounds (VOCs) at rural and urban preschools (aged 3-5 years) between May 2016 and July 2017. Factorial analysis was applied to identify the possible emission sources. Prior communalities were estimated by the squared multiple correlations with all other variables. We used the varimax rotation method and the criterion for factor selection was the number of eigenvalues greater than one. Results indicate that BC and NP were 4- and 3.2-times higher in urban outdoor caused by traffic emissions, respectively. Highest concentrations occurred during rush hours and during the pickup time of children. In urban school, BC was directly related to accumulation mode (N49-205), while in the rural area, BC was related to local traffic and particles from pulp industries in the regional background. Nucleation mode (N11-36) was related to traffic emissions in urban school, while in the rural school was related with secondary formation of particles. Mean I/O ratios of BC and NP in the urban (0.54; 0.51) and rural (0.71; 0.91) schools, respectively, suggested that their higher concentrations occurred in outdoors. VOCs were higher indoor in urban (I/O = 1.97) and rural (I/O = 2.22) sites, indicating these pollutants are generated inside, regardless of urban or rural sites. These findings suggest the necessity of improving ventilation and commuting styles to lower the exposure of children to air pollutants in and around school environments.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Nanopartículas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Criança , Pré-Escolar , Monitoramento Ambiental , Humanos , Material Particulado/análise , Instituições Acadêmicas , Compostos Orgânicos Voláteis/análiseRESUMO
The morphology and composition of roots with different degrees of oxidation as a function of time were evaluated aiming to identify possible hazardous elements and nanoparticles. The roots were obtained from an abandoned coal mine located in the city of Criciúma, Santa Catarina, Brazil. From the roots, analyses were performed to identify nanoparticles (NPs) and ultrafine particles (UFPs), containing possible hazardous elements (PHEs) that cause potential environmental risks and impacts on human health. The identification of nanoscale materials requires greater robustness, so advanced integrated techniques have been used. The characterization of different types of roots was done by using focused ion beam (FIB), to evaluate nano-compound assemblies with high-resolution transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS). The results showed the presence of NPs containing Hg, Co, Cr, Ni, and V. The presence of these elements has increased consistently with the increase of C concentration in the roots, suggesting that the PHEs were gradually released from organic matter and inorganic minerals of coal. However, even with their decrease in roots, it was found that these elements still remained in the soil in significant quantities, even after 15 years of inactivation of the coal mine.
Assuntos
Mercúrio , Nanopartículas , Brasil , Carvão Mineral/análise , Monitoramento Ambiental , HumanosRESUMO
AIM: To compare a gel made with chamomile (Chamomilla recutita) with a cream of urea as an intervention to delay the time to occurrence of radiation dermatitis. BACKGROUND: Radiation dermatitis is one of the most common adverse effects of radiotherapy in patients with head and neck cancer. It is characterized by erythema, itching, pain, skin breakage and burning sensation, and there is no consensus on how to prevent it. DESIGN: The study is a randomized controlled clinical trial. METHODS: We will recruit 48 individuals with head and neck cancer who will be starting their radiotherapy and randomize them to receive either gel of chamomile or cream of urea, as an intervention for prevention of radiation dermatitis. Social-demographic data will be collected at baseline, and clinical data will be collected before the initiation of radiotherapy. Participants will be followed weekly to assess development of radiation dermatitis. The protocol is funded by Conselho Nacional de Pesquisa e Desenvolvimento Científico (Brazil). The study was approved by a research ethics committee. DISCUSSION: Given the clinical relevance of preventing radiation dermatitis and the lack of evidence supporting specific preventive interventions, it is important to study new products that might be efficacious to prevent this complication. This article presents the protocol of a randomized controlled trial comparing a gel made with chamomile (intervention) with a cream of urea (control) to prevent radiation dermatitis in patients with head and neck cancer undergoing radiotherapy.
Assuntos
Camomila , Neoplasias de Cabeça e Pescoço/radioterapia , Radiodermite/prevenção & controle , Ureia , Administração Tópica , Brasil , Humanos , Projetos de PesquisaRESUMO
Although taxels (in particular paclitaxel), cisplatin and fluorouracil (TPF) chemotherapy has been approved for use in the treatment of head and neck squamous cell carcinoma (HNSCC), little is known with regard to the cellular mechanisms of this novel drug association. In order to investigate the reaction of cells to this novel treatment, the present study aimed to examine the cytotoxic effect of TPF in HNSCC cell lines in combination with irradiation, to analyze its effect on cell cycle progression and cell death, and to evaluate its ability to alter cell migration. An MTT assay was used to determine cell viability following TPF and cisplatin treatments in two human HNSCC cell lines (FaDu and SCC-9) and one keratinocyte cell line (HaCaT). The concurrent use of TPF or cisplatin and irradiation was also analyzed. Flow cytometric analysis was utilized to determine the cell cycle distribution and to verify the induction of apoptosis. The capacity of the drugs to alter oral cancer cell migration was also evaluated using a Transwell migration assay. The results indicated that TPF and cisplatin were cytotoxic to all cell lines, and enhanced the effects of ionizing radiation. FaDu cells were significantly more sensitive to the two treatments, and TPF was more cytotoxic than cisplatin for all cells. Flow cytometric analysis revealed that TPF increased the number of cells in G0/G1 phase in the SCC-9 cell line, and indicated apoptotic cell death. The results of the Transwell assay demonstrated that TPF inhibited migration in oral carcinoma cell lines. The results of the present study indicated that TPF functions in oral carcinoma cell lines through the enhancement of ionizing radiation effects, inducing cell cycle arrest at G0/G1 and apoptosis, in addition to inhibiting migration.
RESUMO
The Tubarão River rises in Santa Catarina, Brazil, and has been historically affected by coal mining activities around its springhead. To evaluate its water conditions, an investigation regarding a possible decontamination gradient associated with the increased river flow toward the estuary, as well as the influence of seasonality over this gradient was performed through a series of biomarkers (vitellogenin, comet assay, lipid peroxidation, protein carbonylation, gluthatione, gluthatione S-transferase, acetylcholinesterase, light microscopy in liver, and scanning electron microscopy in gills) and chemical analysis (polycyclic aromatic hydrocarbons (PAHs) in bile and metal analysis in sediment) in the cichlid Geophagus brasiliensis. Two collections (summer and winter) were made in four distinct sites along the river, while sediments were sampled between those seasons. As expected, the contamination linked exclusively to mining activities was not observed, possibly due to punctual inputs of contaminants. The decontamination gradient was not observed, although seasonality seemed to have a critical role in the responses of biomarkers and availability of contaminants. In the summer, the fish presented higher histopathological damages and lower concentrations of PAHs, while in the winter they showed both higher genetic damage and accumulation of PAHs. The Tubarão suffers impacts from diverse activities, representing health risks for wild and human populations.