Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fungal Biol ; 127(5): 1032-1042, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142362

RESUMO

Cladophialophora exuberans is a filamentous fungus related to black yeasts in the order Chaetothyriales. These melanized fungi are known for their 'dual ecology', often occurring in toxic environments and also being frequently involved in human infection. Particularly Cladophialophora exuberans, C. immunda, C. psammophila, and Exophiala mesophila have been described with a pronounced ability to degrade aromatic compounds and xenobiotic volatiles, such as benzene, toluene, ethyl-benzene, and xylene, and are candidates for bioremediation applications. The objective of the present study is the sequencing, assembly, and description of the whole genome of C. exuberans focusing on genes and pathways related to carbon and toxin management, assessing the tolerance and bioremediation of lead and copper, and verifying the presence of genes for metal homeostasis. Genomic evaluations were carried out through a comparison with sibling species including clinical and environmental strains. Tolerance of metals was evaluated via a microdilution method establishing minimum inhibitory (MIC) and fungicidal concentrations (MFC), and agar diffusion assays. Heavy metal bioremediation was evaluated via graphite furnace atomic absorption spectroscopy (GFAAS). The final assembly of C. exuberans comprised 661 contigs, with genome size of 38.10 Mb, coverage of 89.9X and a GC content of 50.8%. In addition, inhibition of growth was shown at concentrations of 1250 ppm for copper and at 625 ppm for lead, using the MIC method. In the agar tests, the strain grew at 2500 ppm of copper and lead. In GFAAS tests, uptake capacities were observed of 89.2% and 95.7% for copper and lead, respectively, after 21 experimental days. This study enabled the annotation of genes involved in heavy metal homeostasis and also contributed to a better understanding of the mechanisms used in tolerance of and adaptation to extreme conditions.


Assuntos
Ascomicetos , Metais Pesados , Humanos , Biodegradação Ambiental , Benzeno/metabolismo , Cobre/metabolismo , Ágar/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Hidrocarbonetos/metabolismo , Metais Pesados/metabolismo , Ecossistema
2.
Braz. arch. biol. technol ; 65: e22210097, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364469

RESUMO

Abstract: Cerrado is the second largest biome in Brazil and majorly contributes to the country's grain production. Previous studies on soil metagenomics from the Cerrado revealed an outstanding microbial diversity. In this study, the abundance of pathogenic fungi was analyzed using metagenomic sequences of the Cerrado soils under native vegetation, and under agriculture with no-tillage and conventional tillage. In total, 128,627 sequences of fungi were identified, with 43,439 representing pathogenic fungi and were distributed as follows: native 17,301 (40%), no-tillage 13,780 (32%), and conventional tillage 12,358 (28%). We identified 41 pathogenic fungal species associated with human and animal infections. The data analysis revealed that the native soils had a higher relative abundance of fungal sequences, similar to pathogenic species sequences, in relation to the total eukaryotic sequences, than the conventional tillage and no-tillage treatments, which observed a reduction in fungal abundance because of anthropogenic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...