Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0241855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156835

RESUMO

Leishmaniasis is a disease impacting public health worldwide due to its high incidence, morbidity and mortality. Available treatments are costly, lengthy and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is warranted and natural products demonstrate promising activity. This study investigated the activity of Connarus suberosus extracts and compounds against Leishmania species. Several C. suberosus extracts were tested against L. amazonensis promastigotes. Active and inactive extracts were analyzed by UHPLC-MS and data evaluated using a metabolomics platform, revealing an unknown neoflavonoid (connarin, 3), isolated together with the pterocarpans: hemileiocarpin (1) and leiocarpin (2). The aforementioned compounds (1-3), together with the benzoquinones: rapanone (4), embelin (5) and suberonone (6) previously isolated by our group from the same species, were tested against: (i) L. amazonensis and L. infantum promastigotes, and (ii) L. amazonensis intracellular amastigotes, with the most active compound (3) also tested against L. infantum amastigotes. Cytotoxicity against murine peritoneal macrophages was also investigated. Compounds 2 and 3 presented an IC50 33.8 µM and 11.4 µM for L. amazonensis promastigotes; and 44.3 µM and 13.3 µM for L. infantum promastigotes, respectively. For L. amazonensis amastigotes, the IC50 of 2 was 20.4 µM with a selectivity index (SI) of 5.7, while the IC50 of 3 was 2.9 µM with an SI of 6.3. For L. infantum amastigotes, the IC50 of 3 was 7.7 µM. Compounds 2 and 3 presented activity comparable with the miltefosine positive control, with compound 3 found to be 2-4 times more active than the positive control, depending on the Leishmania species and form. The extracts and isolated compounds showed moderate toxicity against macrophages. Compounds 2 and 3 altered the mitochondrial membrane potential (ΔΨm) and neutral lipid body accumulation, while 2 also impacted plasma membrane permeabilization, culminating in cellular disorder and parasite death. Transmission electron microscopy of L. amazonensis promastigotes treated with compound 3 confirmed the presence of lipid bodies. Leiocarpin (2) and connarin (3) demonstrated antileishmanial activity. This study provides knowledge of natural products with antileishmanial activity, paving the way for prototype development to fight this neglected tropical disease.


Assuntos
Connaraceae/química , Flavonoides/farmacologia , Metabolômica/métodos , Extratos Vegetais/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/crescimento & desenvolvimento , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
2.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878348

RESUMO

The number of documented dengue cases has increased dramatically in recent years due to transmission through the Aedes aegypti mosquito bite. Vector control remains the most effective measure to protect against this and other arboviral diseases including Zika, chikungunya and (urban) yellow fever, with an established vaccine only available for yellow fever. Although the quinone class shows potential as leading compounds for larvicide development, limited information restricts the development of optimized structures and/or formulations. Thus, in this contribution we investigated the larvicidal and pupicidal activity of three quinone compounds isolated from a Connarus suberosus root wood ethyl acetate extract together with 28 quinones from other sources. Eight quinones demonstrated larvicidal activity, of which tectoquinone (4) proved to be the most active (LC50 1.1 µg/mL). The essential residual effect parameter of four of these quinones was evaluated in laboratory trials, with tectoquinone (4) and 2-ethylanthraquinone (7) presenting the most prolonged activity. In small-scale field residual tests, tectoquinone (4) caused 100% larvae mortality over 5 days, supporting its selection for formulation trials to develop a prototype larvicide to control Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Quinonas/química , Quinonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Inseticidas/isolamento & purificação , Estrutura Molecular , Quinonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...