Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445701

RESUMO

Adeno-associated viral (AAV) vectors represent one of the leading platforms for gene delivery. Nevertheless, their small packaging capacity restricts their use for diseases requiring large-gene delivery. To overcome this, dual-AAV vector systems that rely on protein trans-splicing were developed, with the split-intein Npu DnaE among the most-used. However, the reconstitution efficiency of Npu DnaE is still insufficient, requiring higher vector doses. In this work, two split-inteins, Cfa and Gp41-1, with reportedly superior trans-splicing were evaluated in comparison with Npu DnaE by transient transfections and dual-AAV in vitro co-transductions. Both Cfa and Gp41-1 split-inteins enabled reconstitution rates that were over two-fold higher than Npu DnaE and 100% of protein reconstitution. The impact of different vector preparation qualities in split-intein performances was also evaluated in co-transduction assays. Higher-quality preparations increased split-inteins' performances by three-fold when compared to low-quality preparations (60-75% vs. 20-30% full particles, respectively). Low-quality vector preparations were observed to limit split-gene reconstitutions by inhibiting co-transduction. We show that combining superior split-inteins with higher-quality vector preparations allowed vector doses to be decreased while maintaining high trans-splicing rates. These results show the potential of more-efficient protein-trans-splicing strategies in dual-AAV vector co-transduction, allowing the extension of its use to the delivery of larger therapeutic genes.


Assuntos
Processamento de Proteína , Trans-Splicing , Inteínas , Técnicas de Transferência de Genes , Embalagem de Medicamentos
2.
Front Bioeng Biotechnol ; 11: 1183974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260828

RESUMO

Adeno-associated viruses (AAVs) are one of the most promising tools for gene therapy applications. These vectors are purified using affinity and ion exchange chromatography, typically using packed beds of resin adsorbents. This leads to diffusion and pressure drop limitations that affect process productivity. Due to their high surface area and porosity, electrospun nanofiber adsorbents offer mass transfer and flow rate advantages over conventional chromatographic media. The present work investigated the use of affinity cellulose-based nanofiber adsorbents for adeno-associated virus serotype 5 (AAV5) capture, evaluating dynamic binding capacity, pressure drop, and AAV5 recovery at residence times (RT) less than 5 s. The dynamic binding capacity was found to be residence time-dependent, but nevertheless higher than 1.0 × 1014 TP mL-1 (RT = 1.6 s), with a pressure drop variation of 0.14 MPa obtained after loading more than 2,000 column volumes of clarified AAV5 feedstock. The single affinity chromatography purification step using these new affinity adsorbents resulted in 80% virus recovery, with the removal of impurities comparable to that of bead-based affinity adsorbents. The high binding capacity, virus recovery and reduced pressure drop observed at residence times in the sub-minute range can potentially eliminate the need for prior concentration steps, thereby reducing the overall number of unit operations, process time and costs.

3.
Biotechnol Bioeng ; 120(9): 2578-2587, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37027346

RESUMO

The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Células HeLa , Transfecção
4.
Front Bioeng Biotechnol ; 10: 1020174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420444

RESUMO

Adeno-associated viruses (AAVs) demand for clinical trials and approved therapeutic applications is increasing due to this vector's overall success and potential. The high doses associated with administration strategies challenges bioprocess engineers to develop more efficient technologies and innovative strategies capable of increasing volumetric productivity. In this study, alternating tangential flow (ATF) and Tangential Flow Depth filtration (TFDF) techniques were compared as to their potential for 1) implementing a high-cell-density perfusion process to produce AAV8 using mammalian HEK293 cells and transient transfection, and 2) integrating AAV harvest and clarification units into a single step. On the first topic, the results obtained demonstrate that AAV expression improves with a medium exchange strategy. This was evidenced firstly in the small-scale perfusion-mocking study and later verified in the 2 L bioreactor operated in perfusion mode. Fine-tuning the shear rate in ATF and TFDF proved instrumental in maintaining high cell viabilities and, most importantly, enhancing AAV-specific titers (7.6 × 104 VG/cell), i.e., up to 4-fold compared to non-optimized perfusion cultures and 2-fold compared with batch operation mode. Regarding the second objective, TFDF enabled the highest recovery yields during perfusion-based continuous harvest of extracellular virus and lysate clarification. This study demonstrates that ATF and TFDF techniques have the potential to support the production and continuous harvest of AAV, and enable an integrated clarification procedure, contributing to the simplification of operations and improving manufacturing efficiency.

5.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423148

RESUMO

Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. This paper describes the implementation of a highly sensitive method, capillary electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF) detector to monitor the impact of various bioprocess steps on the quality of different viral vectors. The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This method outperforms other analytical methods, such as SDS-polyacrylamide gel electrophoresis with Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack of suitable analytical tools. This method was also qualified for quantification of rAAV2 according to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of different virus-based targets, with a great potential for application in biomanufacturing.


Assuntos
Eletroforese Capilar , Vírion , Eletroforese Capilar/métodos , Dodecilsulfato de Sódio , Eletroforese em Gel de Poliacrilamida
6.
Pharmaceutics ; 14(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35890242

RESUMO

Replacing batch unit operations of biopharmaceuticals by continuous manufacturing is a maturing concept, with periodic counter-current chromatography (PCC) favoured to replace batch chromatography. Continuous affinity capture of adeno-associated virus (AAV) using PCC has the potential to cope with the high doses required for AAV therapies thanks to its inherent high throughput. The implementation of continuous AAV affinity capture using a four-column PCC process is described herein. First, elution buffer screening was used to optimize virus recovery. Second, breakthrough curves were generated and described using a mechanistic model, which was later used to characterize the loading zone of the PCC. The experimental runs achieved a stable cyclic steady state yielding virus recoveries in line with the optimized batch process (>82%), with almost a three-fold improvement in productivity. The PCC affinity capture process developed here can bolster further improvements to process economics and manufacturing footprint, thereby contributing to the integrated continuous manufacturing concept.

7.
Biotechnol Bioeng ; 119(11): 3210-3220, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906818

RESUMO

Affinity capture is one of the most attractive strategies for simplifying downstream processing. Although it is a key mainstream approach for antibody purification, the same is not true for other biologics such as vaccines, mainly due to the lack of suitable affinity material. In this study, a novel custom affinity system is introduced permitting widespread adoption of affinity capture for the purification of biologics beyond antibodies. This is illustrated here by the development of a one-step purification process of a mutant form of streptolysin O (SLO), a vaccine candidate against Streptococcus pyogenes infection. The system consists of the association of custom ligands based on the Nanofitin protein scaffold, with Eshmuno® industry-grade chromatography medium. The Nanofitins were selected for their specificity to the target product. The newly developed affinity medium was used at different column sizes to monitor scalability from process development (1 ml) and robustness verification (5 ml) to pilot (133 ml) and technical (469 ml) runs. The single-step affinity purification consistently delivered high purity product (above > 90%) and improved performances compared with the current three-step process: reduced process time and footprint (3 to 1 step) and increased product yields (0.31 g vs. 0.04 g of SLO per kg of harvest broth). The custom affinity system herein described can potentially be applied to any biologic for which a specific Nanofitin is identified, thus establishing a platform with a strong impact on the manufacturing of vaccines and other biological targets.


Assuntos
Streptococcus pyogenes , Vacinas , Cromatografia de Afinidade/métodos , Ligantes , Streptococcus pyogenes/genética
8.
Front Bioeng Biotechnol ; 10: 805176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252128

RESUMO

Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs' unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies - nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs' thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90-115 nm for NTA and 129-141 nm for TRPS), surface charges (average of -20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.

9.
Biotechnol Bioeng ; 118(9): 3522-3532, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33818758

RESUMO

Virus-based biologicals are one of the most promising biopharmaceuticals of the 21st century medicine and play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. Oncolytic virus manufacturing scale can range from 5 L in research and development up to 50 L for clinical studies and reach hundreds of liters for commercial scale. The inherent productivity and high integration potential of periodic counter-current chromatography (PCC) offer a transversal solution to decrease equipment footprint and the reduction of several non-value-added unit operations. We report on the design of an efficient PCC process applied to the intermediate purification of oncolytic adenovirus. The developed ion-exchange chromatographic purification method was carried out using a four-column setup for three different scenarios: (i) variation in the feedstock, (ii) potential use of a post-load washing step to improve virus recovery, and (iii) stability during extended operation. Obtained virus recoveries (57%-86%) and impurity reductions (>80% DNA, and >70% total protein) match or overcome batch purification. Regarding process stability and automation, our results show that not only the dynamic control strategy used is able to suppress perturbations in the sample inlet but also allows for unattended operation in the case of ion exchange capture.


Assuntos
Produtos Biológicos/isolamento & purificação , Vírus Oncolíticos/isolamento & purificação , Células A549 , Distribuição Contracorrente , Humanos
10.
Expert Opin Biol Ther ; 20(5): 451-465, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31773998

RESUMO

Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.


Assuntos
Produtos Biológicos/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/análise , Produtos Biológicos/metabolismo , Indústria Farmacêutica , Vesículas Extracelulares/metabolismo , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vírus/química , Vírus/isolamento & purificação
11.
Methods Mol Biol ; 2095: 367-384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31858479

RESUMO

Novel biopharmaceutical products, such as vaccines and viral vectors, play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. However, several challenges are posed when manufacturing these products. The diversity of cell lines and the different physical and chemical properties of these biologicals require the use of different production and processing technologies. Alternative purification strategies that can improve the purification yield, such as continuous chromatography, are regarded nowadays as enabling technologies to overcome some of the bottlenecks in biomanufacturing. This chapter offers a shortcut approach to implement a semi-continuous chromatography purification of hepatitis C virus-like particles produced in insect cells with recombinant baculovirus. Although the purification is based on ion exchange chromatography, the present methodology can be extended to other types of chromatography.


Assuntos
Produtos Biológicos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Hepacivirus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia por Troca Iônica/instrumentação , Vetores Genéticos , Células Sf9
12.
Biotechnol J ; 14(8): e1800570, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31106962

RESUMO

Currently, marketed influenza vaccines are only efficient against homologous viruses, thus requiring a seasonal update based on circulating subtypes. This constant reformulation adds several challenges to manufacturing, particularly in purification due to the variation of the physicochemical properties of the vaccine product. A universal platform approach capable of handling such variation is therefore of utmost importance. In this work, a filtration-based approach is explored to purify influenza virus-like particles. Switching from adsorptive separation to size-based purification allows overcoming the differences in retention observed for different influenza strains. The proposed process employs a cascade of ultrafiltration and diafiltration steps, followed by a sterile filtration step. Different process parameters are assessed in terms of product recovery and impurities' removal. Membrane chemistry, pore size, operation modes, critical flux, transmembrane pressure, and permeate control strategies are evaluated. After membrane selection and parameter optimization, concentration factors and diafiltration volumes are also defined. By optimizing the filtration mode of operation, it is possible to achieve product recoveries of approximately 80%. Overall, the process time is decreased by 30%, its scalability is improved, and the costs are reduced due to the removal of chromatography and associated buffer consumptions, cleaning, and its validation steps.


Assuntos
Biotecnologia/métodos , Vírus da Influenza A , Ultrafiltração/métodos , Vírion/isolamento & purificação , Animais , Linhagem Celular , Vacinas contra Influenza , Membranas Artificiais , Esterilização , Ultrafiltração/instrumentação , Vacinas de Partículas Semelhantes a Vírus
13.
Curr Gene Ther ; 18(6): 366-374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30411681

RESUMO

INTRODUCTION: Oncolytic virus therapy is currently considered as a promising therapeutic approach for cancer treatment. Adenovirus is well-known and extensively characterized as an oncolytic agent. The increasing number of clinical trials using this virus generates the demand for the development of a well-established purification approach. Triton X-100 is commonly used in cell lysis buffer preparations. The addition of this surfactant in the list of substances with the very high concern of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation promoted the research for effective alternatives. METHODS: In this work, a purification strategy for oncolytic adenovirus compatible with phase I clinical trials, using an approved surfactant - Polysorbate 20 was developed. The proposed downstream train, composed by clarification, concentration using tangential flow filtration, intermediate purification with anion exchange chromatography, followed by a second concentration and a final polishing step was evaluated for both Triton X-100 and Polysorbate 20 processes. The impact of cell lysis with Polysorbate20 and Triton X-100 for each downstream step was evaluated in terms of product recovery and impurities removal. Overall, 61 ± 4% of infectious viral particles were recovered. Depletion of host cell proteins and ds-DNA was 99.9% and 97.1%, respectively. RESULTS & CONCLUSION: The results indicated that Polysorbate 20 can be used as a replacement for Triton X-100 during cell lysis with no impact on product recovery, potency, and purity. Moreover, the developed process is scalable and able to provide a highly purified product to be used in phase I and II clinical trials.


Assuntos
Adenoviridae/isolamento & purificação , Vírus Oncolíticos/isolamento & purificação , Polissorbatos , Células A549 , Adenoviridae/patogenicidade , Filtração/métodos , Humanos , Octoxinol , Vírus Oncolíticos/patogenicidade
14.
J Chromatogr A ; 1429: 292-303, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739915

RESUMO

The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential.


Assuntos
Cromatografia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Sobrevivência Celular , Filtração , Humanos
15.
J Biotechnol ; 213: 109-19, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25744665

RESUMO

A simple, yet efficient, two-column simulated moving-bed (2CSMB) process for purifying adenovirus serotype 5 (Ad5) by size-exclusion chromatography (SEC) is presented and validated experimentally, and a general procedure for its robust design under parameter uncertainty is described. The pilot-scale run yielded a virus recovery of 86 percent and DNA and HCP clearances of 90 and 89 percent, respectively, without any fine tuning of the operating parameters. This performance compares very favorably against that of single-column batch chromatography for the same volume of size-exclusion resin. To improve the robustness of the 2CSMB-SEC process the best set of operating parameters is selected only among candidate solutions that are robust feasible, that is, remain feasible for all parameter perturbations within their uncertainty intervals. This robust approach to optimal design replaces the nominal problem by a worst case problem. Computational tractability is ensured by formulating the robust design problem with only the vertices of the uncertainty region that have the worst effect on the product purity and recovery. The robust design is exemplified on the case where the column volume and interparticle porosity are subject to uncertainty. As expected, to increase the robustness of the 2CSMB-SEC process it is necessary to reduce its productivity and increase its solvent consumption. Nevertheless, the design solution given by our robust approach is the least detrimental of all feasible operating conditions for the 2CSMB-SEC process.


Assuntos
Adenoviridae/isolamento & purificação , Cromatografia em Gel , Reprodutibilidade dos Testes , Incerteza
16.
J Biotechnol ; 213: 97-108, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25746903

RESUMO

The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential.


Assuntos
Reatores Biológicos , Células-Tronco Mesenquimais , Amônia/metabolismo , Adesão Celular , Contagem de Células , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Fibroblastos/citologia , Prepúcio do Pênis/citologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Perfusão , Telomerase/metabolismo
17.
J Chromatogr A ; 1347: 111-21, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24813933

RESUMO

Adenovirus serotype 5 (Ad5) was successfully separated by size-exclusion chromatography (SEC) using a simple, yet efficient, two-column, quasi-continuous, simulated moving-bed process operated in an open-loop configuration. The operating cycle is divided into two identical half-cycles, each of them consisting of the following sequence of sub-steps: (i) elution of the upstream column and direction of the effluent of the downstream column to waste; (ii) elution of the upstream column and redirection of its effluent to waste while the downstream column is fed with the clarified bioreaction bulk and its effluent collected as purified product; (iii) operation of the system as in step (i) but collecting the effluent of the downstream column as product; (iv) elution of the upstream column and direction of its effluent to waste while the flow through the downstream column is temporarily halted. Clearance of impurities, namely DNA and host cell protein (HCP), were experimentally assessed. The pilot-scale run yielded a virus recovery of 86%, and a clearance of 90% and 89% for DNA and HCP, respectively, without any fine tunning of the predetermined operating parameters. These figures compare very favorably against single-column batch chromatography for the same volume of size-exclusion resin. However, and most importantly, the virus yield was increased from 57% for the batch system to 86% for the two-column SEC process because of internal recycling of the mixed fractions of contaminated Ad5, even though the two-column process was operated strictly in an open-loop configuration. And last, but not least, the productivity was increased by 6-fold with the two-column process. In conclusion, the main drawbacks of size-exclusion chromatography, namely low productivity and low product titer, were overcome to a considerable extent by an innovative two-column configuration that keeps the mixed fractions inside the system at all times.


Assuntos
Adenoviridae/isolamento & purificação , Cromatografia em Gel , Distribuição Contracorrente , DNA Viral/isolamento & purificação , Células HEK293 , Humanos , Vírion/isolamento & purificação
18.
J Chromatogr A ; 1260: 132-42, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22980644

RESUMO

We present a new class of multicolumn chromatographic processes that change the classical way of handling the product outlets of simulated moving-bed (SMB) chromatography to avoid the use of flow controllers or an extra pump-the objective is to have just two- or three-way valves at a column outlet-while maintaining the analogy with the SMB in terms of displaced volumes of fluid per switch interval. In this class of processes the flow through a zone (or column) is always in one of the three states: (i) frozen, (ii) completely directed to the next zone (or column), or (iii) entirely diverted to a product line. We use the term relayed stream to refer to this particular type of manipulation of the outflow from a column. For this class of processes we derive a SMB analog-the R-SMB process-and demonstrate, under the framework of the equilibrium theory, that this process has the same separation region as the classical SMB for linear adsorption systems. In addition, the results from the equilibrium theory show that the R-SMB process consists of two distinct cycles that differ only in their intermediate sub-step: one cycle for selectivities α smaller than (3+√5)/2 and another cycle for larger values of α; in the former case no product stream is collected during the intermediate sub-step, whereas in the latter case both product streams are collected. We also examine the R-SMB process under conditions of finite column efficiency and compare its performance against those of the classical open- and closed-loop SMBs. Our simulation results show that the R-SMB process requires less desorbent and is more productive than the standard SMB processes under conditions of finite column efficiency and that the comparison increasingly favors the R-SMB as the column efficiency decreases.


Assuntos
Cromatografia/métodos , Modelos Teóricos , Adsorção , Simulação por Computador , Projetos de Pesquisa
19.
J Chromatogr A ; 1217(52): 8257-69, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111426

RESUMO

A comprehensive description of a new process--the GSSR (Gradient with Steady State Recycle) process--for center-cut separation by solvent-gradient chromatography is provided, highlighting its versatility, flexibility, and ease of operation. The GSSR process is particularly suited for ternary separation of bioproducts: it provides three main fractions or cuts, with a target product contained in the intermediate fraction. The process comprises a multicolumn, open-loop system, with cyclic steady state operation, that simulates a solvent gradient moving countercurrently with respect to the solid phase. However, the feed is always injected into the same column and the product always collected from the same column as in a batch process; moreover, both steps occur only once per cycle. The GSSR process was experimentally validated in a pilot unit, using the purification of a crude peptide mixture by reversed phase as a proof of concept; the crude mixture is roughly 50% pure and some of its impurities have isocratic retention times very close to that of the target peptide. Experimental results are reported in terms of cyclic steady-state profiles and process performance indicators, which include product purity and yield. A simplified model-based approach, which uses only a few key components of the crude mixture, is employed to assist in the explanation of the process operation. By dynamically adjusting the switching interval while the process is running, to correctly position the composition profile with respect to the outlet ports, pure product satisfying the target specifications--98% purity and 95% recovery--was obtained under stable operation in the pilot unit.


Assuntos
Cromatografia Líquida/instrumentação , Solventes/química
20.
J Chromatogr A ; 1217(20): 3382-91, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20356598

RESUMO

We report on a numerical and experimental study of two-column versions of streamlined, multicolumn, semi-continuous chromatography for binary separation. The systems combine a flexible node design, cyclic flow-rate modulation, and relayed operation of the inlet/outlet ports to extend the mass-transfer zone over the largest possible length, while keeping it inside the system at all times. One advantage of these streamlined designs is the simplicity of their physical realization: regardless of the number of columns, they only require two pumps to supply feed and desorbent into the system, while the flow rates of liquid withdrawn from the system are controlled by material balance using simple two-way valves. In one case, an extra pump is needed to recirculate the fluid in closed-loop. A rigorous model-based optimization approach is employed in the optimal design of the cycles to generate solutions that are physically realizable in the experimental set-ups. The optimized schemes for two-column operation supply fresh feed into the middle of the system where the composition of the circulating fluid is closest to that of the feedstock fluid, and recover the purified products, extract and raffinate, alternately at the downstream end of the unit, while desorbent is continuously supplied into the upstream end of the system. By internally recycling part of the non-pure cut fraction, the scheme with a step of closed-loop recycling significantly reduces its solvent consumption. The feasibility and effectiveness of the reported two-column processes have been verified experimentally on the linear separation of nucleosides by reversed phase subject to 99% purity constraints on both products. It is shown that our processes compare favorably against single-column batch chromatography, steady-state recycling, and four-column, open-loop SMB, for the same amount of adsorbent; they are also better than the four-column, closed-loop SMB at high feed throughputs.


Assuntos
Distribuição Contracorrente/métodos , Nucleosídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...