Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 12(48): 5801-5814, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33319873

RESUMO

This work presents the association of cloud point extraction (CPE) and electroanalysis for the selective and sensitive determination of methyl parathion (MP) in honey. The CPE step provided the pre-concentration of MP from a complex sample, in which the optimized extraction parameters (Triton X-100 concentration of 0.75% w/v, NaCl concentration of 1.0% w/v and heating time of 30 min) were investigated using a factorial design (23). The detection of MP was performed using a cathodically pre-treated boron-doped diamond (BDD) working electrode and square wave voltammetry (SWV), after a suitable dilution of the CPE extract in Britton-Robinson buffer pH 6.0 as the supporting electrolyte. MP presented three electrochemical processes over the BDD surface, but only the reduction peak at around -0.7 V was monitored for the MP determination (higher detectability). Improved reproducibility was reached by applying an in situ cleaning step (+2.0 V for 15 s) followed by a re-activation process (-2.0 V for 15 s) between measurements. Using the optimized variables, a linear range between 0.1 and 2.0 µmol L-1 was obtained for MP with a limit of detection of 0.006 µmol L-1, a 6-fold lower value when compared with the value attained without the CPE step. The experimental enrichment factor of MP was 6.1. Also, the optimized CPE allowed the determination of MP in honey samples with good accuracy (recovery between 94 and 106%), which was not possible using direct detection (without CPE) due to the matrix interference. This is the first paper that demonstrates the combination of CPE and electroanalysis for the determination of an organic compound.

2.
Anal Chim Acta ; 1132: 10-19, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980099

RESUMO

The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 µL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 µmol L-1, linear range from 5 to 500 µmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 µmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.

3.
Anal Chim Acta ; 1033: 49-57, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30172331

RESUMO

This work presents potential applications of low-cost fused deposition modeling 3D-printers to fabricate multiuse 3D-printed electrochemical cells for flow or batch measurements as well as the 3D-printing of electrochemical sensing platforms. Electrochemical cells and sensors were printed with acrylonitrile butadiene styrene (ABS) and conductive graphene-doped polylactic acid (G-PLA) filaments, respectively. The overall printing operation time and estimated cost per cell were 6 h and $ 6.00, respectively, while the sensors were printed within minutes (16 sensor strips of 1 × 2 cm in 10 min at a cost of $ 1.00 each sensor). The cell performance is demonstrated for the amperometric detection of tert-butylhydroquinone, dipyrone, dopamine and diclofenac by flow-injection analysis (FIA) and batch-injection analysis (BIA) using different working electrodes, including the proposed 3D-printed sensor, which presented comparable electroanalytical performance with other carbon-based electrodes (LOD of 0.1 µmol L-1 for dopamine). Raman spectroscopy and scanning electron microscopy of the 3D-printed sensor indicated the presence of graphene nanoribbons within the polymeric matrix. Electrochemical impedance spectroscopy and heterogeneous electron transfer constants (k0) for the redox probe Ru(NH3)6+3 revealed that a glassy-carbon electrode presented faster electron transfer rates than the 3D-printed sensor; however, the latter presented lower LOD values for dopamine and catechol probably due to oxygenated functional groups at the G-PLA surface.


Assuntos
Técnicas Eletroquímicas , Análise de Injeção de Fluxo , Impressão Tridimensional , Diclofenaco/análise , Dipirona/análise , Dopamina/análise , Transporte de Elétrons , Hidroquinonas/análise , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...