Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 163: 1591-1598, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32791282

RESUMO

Chitosan (CH) was N-alkylated via Schiff base formation and further reduced via sodium borohydride. The reaction was carried out at room temperature, in a homogeneous aqueous medium, using as a source of alkyl group an essential oil (Eucalyptus staigeriana) containing an unsaturated aldehyde (3,7-dimethylocta-2,6-dienal). Derivatives were characterized by Infrared Spectroscopy, proton and carbon Nuclear Magnetic Resonance, XRD, particle size distribution and zeta potential. Chitosan hydrophobization evidence was given by FTIR as new bands at 2929 cm-1 due to methyl groups, along with the presence of strong band at 1580 cm-1 owing to N substitution. Moreover, carbon and proton NMR corroborated the insertion of methyl groups in chitosan backbone. The degree of substitution was found to be in the range 0.69-1.44. X-ray diffractograms revealed that the insertion of alkyl substituents in chitosan backbone led to a less crystalline material. Data from antibacterial activity revealed that chitosan and derivatives were effective against Gram-positive bacteria, whereby derivatives exhibited greater inhibitory effect than CH. Derivatives are likely candidates for use as carriers for active principles of interest of food, pharmacy and medicine.


Assuntos
Quitosana/química , Alquilação , Antibacterianos/química , Antibacterianos/farmacologia , Boroidretos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos , Óleos Voláteis/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
2.
Int J Biol Macromol ; 108: 523-530, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29225182

RESUMO

Cashew gum (GC) is a polysaccharide whose structural modification has the potential to extend its applications on varied fields such as to the formation of self-organized nanoparticulated systems. In this work, a 23 factorial design was carried out, aiming at evaluation of the influence of the reactional parameters of an acetylation reaction on the final properties of cashew gum. The effects of temperature, reaction time and amount of acetylating agent on the reaction yield and degree of GC acetylation were investigated. Data obtained revealed that the aforementioned parameters influenced both yield and degree of acetylation. Statistical analysis showed that the different derivatives had their variables influenced mainly by temperature and interaction effect between the factors time and quantity of acetylating agent. Acetylated derivatives were obtained with yield higher than 90% and degrees of acetylation above 2.42. Data on the formation of self-organized systems, revealed particle sizes in the range 190-300nm, where smaller particle sizes were obtained for derivatives with acetylation degrees lower than 1.5. Release profiles of Amphotericin-B incorporated in derivative nanoparticles, yielded 70% encapsulation efficiency and long release profiles, corroborating their potential application to delivery of hydrophobic active principles.


Assuntos
Anfotericina B/química , Goma de Mascar/análise , Acetilação , Anfotericina B/administração & dosagem , Anfotericina B/farmacocinética , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...