Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Science ; 379(6630): eabp8622, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701452

RESUMO

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Assuntos
Carbono , Conservação dos Recursos Naturais , Floresta Úmida , Biodiversidade , Ciclo do Carbono , Brasil
4.
J Environ Manage ; 286: 112189, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677342

RESUMO

Fire is one of the most powerful modifiers of the Amazonian landscape and knowledge about its drivers is needed for planning control and suppression. A plethora of factors may play a role in the annual dynamics of fire frequency, spanning the biophysical, climatic, socioeconomic and institutional dimensions. To uncover the main forces currently at play, we investigated the area burned in both forested and deforested areas in the outstanding case of Brazil's state of Acre, in southwestern Amazonia. We mapped burn scars in already-deforested areas and intact forest based on satellite images from the Landsat series analyzed between 2016 and 2019. The mapped burnings in already-deforested areas totalled 550,251 ha. In addition, we mapped three forest fires totaling 34,084 ha. Fire and deforestation were highly correlated, and the latter occurred mainly in federal government lands, with protected areas showing unprecedented forest fire levels in 2019. These results indicate that Acre state is under increased fire risk even during average rainfall years. The record fires of 2019 may continue if Brazil's ongoing softening of environmental regulations and enforcement is maintained. Acre and other Amazonian states must act quickly to avoid an upsurge of social and economic losses in the coming years.


Assuntos
Incêndios , Incêndios Florestais , Brasil , Conservação dos Recursos Naturais , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...