Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 391: 133231, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613528

RESUMO

This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â†’ 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.


Assuntos
Antioxidantes , Prebióticos , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
2.
Foods ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407041

RESUMO

The prebiotic potential of fructo-oligosaccharides (microbial-FOS) produced by a newly isolated Aspergillus ibericus, and purified by Saccharomyces cerevisiae YIL162 W, was evaluated. Their chemical structure and functionality were compared to a non-microbial commercial FOS sample. Prebiotics were fermented in vitro by fecal microbiota of five healthy volunteers. Microbial-FOS significantly stimulated the growth of Bifidobacterium probiotic strains, triggering a beneficial effect on gut microbiota composition. A higher amount of total short-chain fatty acids (SCFA) was produced by microbial-FOS fermentation as compared to commercial-FOS, particularly propionate and butyrate. Inulin neoseries oligosaccharides, with a degree of polymerization (DP) up to 5 (e.g., neokestose and neonystose), were identified only in the microbial-FOS mixture. More than 10% of the microbial-oligosaccharides showed a DP higher than 5. Differences identified in the structures of the FOS samples may explain their different functionalities. Results indicate that microbial-FOS exhibit promising potential as nutraceutical ingredients for positive gut microbiota modulation.

3.
Polymers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616373

RESUMO

Microbial exopolysaccharides (EPS) are promising alternatives to synthetic polymers in a variety of applications. Their high production costs, however, limit their use despite their outstanding properties. The use of low-cost substrates such as agro-industrial wastes in their production, can help to boost their market competitiveness. In this work, an alternative low-cost culture medium (CSLM) was developed for EPS production by Rhizobium viscosum CECT908, containing sugarcane molasses (60 g/L) and corn steep liquor (10 mL/L) as sole ingredients. This medium allowed the production of 6.1 ± 0.2 g EPS/L, twice the amount produced in the standard medium (Syn), whose main ingredients were glucose and yeast extract. This is the first report of EPS production by R. viscosum using agro-industrial residues as sole substrates. EPSCSLM and EPSSyn exhibited a similar carbohydrate composition, mainly 4-linked galactose, glucose and mannuronic acid. Although both EPS showed a good fit to the Herschel-Bulkley model, EPSCSLM displayed a higher yield stress and flow consistency index when compared with EPSSyn, due to its higher apparent viscosity. EPSCSLM demonstrated its potential use in Microbial Enhanced Oil Recovery by enabling the recovery of nearly 50% of the trapped oil in sand-pack column experiments using a heavy crude oil.

4.
Food Chem ; 344: 128588, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229151

RESUMO

Grape seeds are among the main constituents of grape pomace, ranging between 20% and 30% of the wet matrix; however, their oligosaccharide composition has not been studied. This paper describes the purification and the identification of low molecular weight oligosaccharides contained in an EtOH/water extract of grape seeds. A sequential two-step purification by size exclusion chromatography was carried out to fractionate compounds according to molecular weights. Chemical characterization of the combined fractions was performed by Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry analyses. The separation process gave two fractions abundant in sucrose and glucose. A third fraction containing trisaccharides was acetylated allowing the purification of the main trisaccharide. The structure elucidation of the acetylated product made it possible to identify gentianose, a predominant carbohydrate reserve found in the storage roots of perennial Gentiana lutea. Grape seeds are wine industry by-products and the obtained results suggest the importance of their recovery.


Assuntos
Oligossacarídeos/química , Vitis/metabolismo , Fracionamento Químico , Cromatografia em Gel , Cromatografia em Camada Fina , Cromatografia Gasosa-Espectrometria de Massas , Oligossacarídeos/isolamento & purificação , Sementes/metabolismo
5.
Antioxidants (Basel) ; 8(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581507

RESUMO

This work aimed to characterize compositional and bioactive features of Aloe vera leaf (fillet, mucilage, and rind) and flower. The edible fillet was analysed for its nutritional value, and all samples were studied for phenolic composition and antioxidant, anti-inflammatory, antimicrobial, tyrosinase inhibition, and cytotoxic activities. Dietary fibre (mainly mannan) and available carbohydrates (mainly free glucose and fructose) were abundant macronutrients in fillet, which also contained high amounts of malic acid (5.75 g/100 g dw) and α-tocopherol (4.8 mg/100 g dw). The leaf samples presented similar phenolic profiles, with predominance of chromones and anthrones, and the highest contents were found in mucilage (131 mg/g) and rind (105 mg/g) extracts, which also revealed interesting antioxidant properties. On the other hand, the flower extract was rich in apigenin glycoside derivatives (4.48 mg/g), effective against Pseudomonas aeruginosa (MIC = 0.025 mg/mL and MBC = 0.05 mg/mL) and capable of inhibiting the tyrosinase activity (IC50 = 4.85 mg/mL). The fillet, rind, and flower extracts also showed a powerful antifungal activity against Aspergillus flavus, A. niger, Penicillium funiculosum, and Candida albicans, higher than that of ketoconazole. Thus, the studied Aloe vera samples displayed high potential to be exploited by the food or cosmetic industries, among others.

6.
Methods Mol Biol ; 1914: 99-128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729462

RESUMO

The techniques that are useful for applying mechanical strain to bone and bone cells are now more diverse than described in the second Edition. Their output has also increased substantially and, perhaps most importantly, their significance is now broadly accepted. This growth in the use of methods for applying mechanical strain to bone and its constituent cells and increased awareness of the importance of the mechanical environment in controlling normal bone cell behavior has indeed heralded new therapeutic approaches. We have expanded the text to include additions and modifications made to the straining apparatus and updated the research cited to support this growing role of cell cultures, including co-culture systems and primary cells, tissue engineering, and organ culture models to analyze responses of bone cells to mechanical stimulation. We understand that there are approaches not covered here and appreciate that alternative strategies have their own value and utility.


Assuntos
Osso e Ossos/citologia , Osteócitos/fisiologia , Cultura Primária de Células/métodos , Estresse Mecânico , Animais , Células Cultivadas , Galinhas , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Cães , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Osteogênese , Cultura Primária de Células/instrumentação , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
7.
Carbohydr Polym ; 199: 546-554, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143161

RESUMO

Brewers' spent grain (BSG) is an inexpensive and abundant brewery by-product that can be used to produce prebiotic arabino-xylooligosaccharides (AXOS). In this study, Bacillus subtilis 3610 was used, for the first time, to produce AXOS through direct fermentation of BSG. Additionally, the microorganism was genetically modified to improve the AXOS production. The xylanase gene xyn2 from Trichoderma reesei coupled with a secretion tag endogenous to B. subtilis was cloned in pDR111 and integrated into its chromosome. After optimization by experimental design, AXOS with a degree of polymerization ranging from 2 to 6 were obtained. The maximum production yield expressed in xylose equivalents per amount of BSG (54.2 ± 1.1 mg/g) represents an increase of 33% comparing to the wild type. When compared with the enzymatic hydrolysis process, single-step fermentation with B. subtilis proved to be a very promising low-cost strategy for the simultaneous production of AXOS and valorization of BSG.


Assuntos
Bacillus subtilis/metabolismo , Grão Comestível/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Oligossacarídeos/biossíntese , Bacillus subtilis/genética , Endo-1,4-beta-Xilanases/genética , Fermentação , Glucuronatos/química , Microrganismos Geneticamente Modificados/genética , Oligossacarídeos/química , Prebióticos , Trichoderma/enzimologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29619368

RESUMO

Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...