Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res. Biomed. Eng. (Online) ; 34(1): 45-53, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-896209

RESUMO

Abstract Introduction Breast cancer is the most common cancer in women and one of the major causes of death from cancer among female around the world. The early detection and treatment are the major way to healing. The use of mammary thermography in Mastology is increasing as a complementary imaging technique to early detect lesions. Its use as a screening exam to identify breast disorders has been investigated. The aim of this study is to investigate the behavior of different classification methods while grouping the thermographic images into specific types of lesions. Methods To evaluate our proposal, we built classifiers based on artificial neural networks, decision trees, Bayesian classifiers, and Haralick and Zernike attributes. The image database is composed by thermographic images acquired at the University Hospital of the Federal University of Pernambuco. These images are clinically classified into the classes cyst, malignant and benign. Moments of Zernike and Haralick were used as attributes. Results Extreme Learning Machines (ELM) and Multilayer Perceptron networks (MLP) proved to be quite efficient classifiers for classification of breast lesions in thermographic images. Using 75% of the database for training, the maximum value obtained for accuracy was 73.38%, with a Kappa index of 0.6007. This result indicated to a sensitivity of 78% and specificity of 88%. The overall efficiency of the system was 83%. Conclusion ELM showed to be a promising classifier to be used in the differentiation of breast lesions in thermographic images, due to its low computational cost and robustness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA