Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Dermatol ; 184(6): 1143-1152, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33205411

RESUMO

BACKGROUND: Skin sensitization to hydroperoxides (R-OOHs) of the commonly used fragrance terpenes limonene, linalool and citronellol is frequently reported. R-OOHs are believed to initiate the process leading to sensitization and allergic contact dermatitis through mechanisms involving radical intermediates. Thus, radical intermediates, keratinocytes and dendritic cells (DCs) may act in concert to initiate the process. OBJECTIVES: To evaluate individual DC activation profiles by R-OOHs in the context of keratinocytes with regard to frequency, specificity and magnitude of upregulation. METHODS: We used 2D and 3D cocultures with keratinocytes/reconstructed human epidermis (RHE) and DCs to evaluate cell surface levels of the costimulatory molecules CD86, CD80 and the adhesion molecule CD54 on cocultured DCs. Analysis of radical formation from limonene hydroperoxides in RHE was performed using electron paramagnetic resonance combined with the spin trapping technique. RESULTS: R-OOHs induce donor-dependent DC activation. Major differences were found between the limonene-OOHs. Limonene-1-OOH was stronger with respect to both frequency and magnitude of response. Using a 3D coculture model, no DC activation was detected after topical application of 0·2% limonene-OOHs (20 µg cm-2 ), while 1·2% limonene-1-OOH or 2% limonene-2-OOH induced DC activation. Furthermore, we demonstrated differences in the carbon and oxygen radicals formed from the limonene-OOHs using RHE, mimicking what may happen in vivo. CONCLUSIONS: We report clear individual differences in DC maturation induced by the most important hydroperoxides. Response rates and magnitude of response both indicate that very small structural alterations in the hydroperoxides are translated into specific DC responses. In addition, we provide more insight into the amounts of hydroperoxides that can activate DCs and induce sensitization.


Assuntos
Dermatite Alérgica de Contato , Peróxido de Hidrogênio , Células Dendríticas , Dermatite Alérgica de Contato/etiologia , Radicais Livres , Humanos , Queratinócitos , Odorantes
2.
Pharmacogenomics J ; 10(6): 478-88, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20125119

RESUMO

Inter-individual variability in cytochrome P450 (CYP)-mediated xenobiotic metabolism is extensive. CYP1A2 is involved in the metabolism of drugs and in the bioactivation of carcinogens. The objective of this study was to functionally characterize eight polymorphic forms of human CYP1A2, namely T83M, S212C, S298R, G299S, I314V, I386F, C406Y and R456H. cDNAs of these variants were constructed and coexpressed in Escherichia coli with human NADPH cytochrome P450 oxidoreductase (CYPOR). All variants showed similar levels of apoprotein and holoprotein expression, except for I386F and R456H, which showed only apoprotein, and both were functionally inactive. The activity of CYP1A2 variants was investigated using 8 substrates, measuring 16 different activity parameters. The resulting heterogeneous activity data set was analyzed together with CYP1A2 wild-type (WT) form, applying multivariate analysis. This analysis indicated that variant G299S is substantially altered in catalytic properties in comparison with WT, whereas variant T83M is slightly but significantly different from the WT. Among CYP1A2 variants, out of the heterogeneous set of eight substrates, carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was the most discriminative compound. In addition, R456 could be identified as an important residue for proper heme binding and stabilization.


Assuntos
Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Clonagem Molecular , Escherichia coli/enzimologia , Heme/metabolismo , Humanos , Mutagênese Sítio-Dirigida , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nitrosaminas/metabolismo , Polimorfismo Genético , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...