Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086117

RESUMO

In this study, the effects of thermal treatment at moderately low temperatures (Tmax: 525 °C) on the composition and properties of two distinct green liquor dregs (GLD) samples from two different pulp mills were investigated. This in-depth characterization was conducted with the aim of enabling the use of GLD as raw materials in cementitious applications (e.g., alkali-activated binders). The elemental composition of the GLD samples primarily comprised Ca, Mg, S, Na, and Mn. Analysis using x-ray diffractometry, an electron probe microanalyzer, and scanning electron microscopy revealed that calcite was the main crystalline phase, whereas layered double hydroxides with varying compositions constituted the primary amorphous phase. Characterization through Fourier-transform infrared spectroscopy and thermogravimetric analysis coupled with mass spectrometer analysis, indicated the loss of water and carbon during thermal treatment. Total organic carbon analysis showed that most of the removed carbon was organic, despite some remaining after thermal treatment at 525 °C. A leaching test was conducted to quantify the soluble Ca, Mg, Na, and K content, as well as pH variations. Overall, the findings suggest that thermal treatment enhances the potential of GLD samples for use in binder materials in the construction sector.


Assuntos
Álcalis , Hidróxidos , Carbono
2.
ACS Appl Energy Mater ; 5(4): 4047-4058, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35497684

RESUMO

N-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is recovered, dimethylformamide (DMF) is a considerable candidate to replace NMP. The lower boiling point and higher ignition temperature of DMF lead to a significant reduction in the energy consumption needed for drying the electrodes and improve the safety of the production process. Additionally, the lower surface tension and viscosity of DMF enable improved current collector wetting and higher concentrations of the solid material in the cathode slurry. To verify the suitability of DMF as a replacement for NMP, we utilized screen printing, a fabrication method that provides roll-to-roll compatibility while allowing controlled deposition and creation of sophisticated patterns. The battery systems utilized NMC (LiNi x Mn y Co z O2) chemistry in two configurations: NMC523 and NMC88. The first, well-established NCM523, was used as a reference, while NMC88 was used to demonstrate the potential of the proposed method with high-capacity materials. The cathodes were used to create coin and pouch cell batteries that were cycled 1000 times. The achieved results indicate that DMF can successfully replace NMP in the NMC cathode fabrication process without compromising battery performance. Specifically, both the NMP blade-coated and DMF screen-printed batteries retained 87 and 90% of their capacity after 1000 (1C/1C) cycles for NMC523 and NMC88, respectively. The modeling results of the drying process indicate that utilizing a low-boiling-point solvent (DMF) instead of NMP can reduce the drying energy consumption fourfold, resulting in a more environmentally friendly battery production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...