Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 243, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997742

RESUMO

Histone methyltransferases (HMTs) are enzymes that regulate histone methylation and play an important role in controlling transcription by altering the chromatin structure. Aberrant activation of HMTs has been widely reported in certain types of neoplastic cells. Among them, G9a/EHMT2 and GLP/EHMT1 are crucial for H3K9 methylation, and their dysregulation has been associated with tumor initiation and progression in different types of cancer. More recently, it has been shown that G9a and GLP appear to play a critical role in several lymphoid hematologic malignancies. Importantly, the key roles played by both enzymes in various diseases made them attractive targets for drug development. In fact, in recent years, several groups have tried to develop small molecule inhibitors targeting their epigenetic activities as potential anticancer therapeutic tools. In this review, we discuss the physiological role of GLP and G9a, their oncogenic functions in hematologic malignancies of the lymphoid lineage, and the therapeutic potential of epigenetic drugs targeting G9a/GLP for cancer treatment.

2.
Aust Endod J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963178

RESUMO

To evaluate the effects of the association of host defence peptide IDR-1002 and ciprofloxacin on human dental pulp cells (hDPSCs). hDPSCs were stimulated with ciprofloxacin and IDR-1002. Cell viability (by MTT assay), migration capacity (by scratch assay), production of inflammatory and anti-inflammatory mediators by hDPSCs (RT-PCR) and osteogenic differentiation (alizarin red staining) were evaluated. Phenotypic profile of hDPSCs demonstrated 97% for positive marked mesenchymal stem cell. Increased pulp cell migration and proliferation were observed after 24 and 48 h of exposure to IDR-1002 with ciprofloxacin. Mineral matrix formation by hDPSCs was observed of the association while its reduction was observed in the presence of peptide. After 24 h, the association between ciprofloxacin and IDR-1002 significantly downregulated TNFRSF-1, IL-1ß, IL-8, IL-6 and IL-10 gene expression (p ≤ 0.0001). The association between the IDR-1002 and ciprofloxacin showed favourable immunomodulatory potential, emerging as a promising option for pulp revascularisation processes.

3.
Cells ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786036

RESUMO

Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.


Assuntos
Macrófagos , Monócitos , Células Th1 , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Peptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Interleucina-10/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
4.
J Endod ; 50(3): 362-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211820

RESUMO

INTRODUCTION: Evidence indicates that senescence can affect essential dental pulp functions, such as defense capacity and repair, consequently affecting the successes of conservative endodontic treatments. This study aims to evaluate the effects of senescence on the morphology, migration, proliferation, and immune response of human dental pulp cells. METHODS: Cells were treated with doxorubicin to induce senescence, confirmed by ß-galactosidase staining. Morphological changes, cellular proliferation, and migration were evaluated by scanning electron microscopy, trypan blue cells, and the scratch method, respectively. Modifications in the immune response were evaluated by measuring the genes for pro-inflammatory cytokines tumor necrosis factor alpha and interleukin (IL)-6 and anti-inflammatory cytokines transforming growth factor beta 1 and IL-10 using the real time polymerase chain reaction assay. RESULTS: An increase in cell size and a decrease in the number of extensions were observed in senescent cells. A reduction in the proliferative and migratory capacity was also found in senescent cells. In addition, there was an increase in the gene expression of inflammatory cytokines tumor necrosis factor alpha and IL-6 and a decrease in the gene expression of IL-10 and transforming growth factor beta-1, suggesting an exacerbated inflammatory situation associated with immunosuppression. CONCLUSIONS: Cellular senescence is possibly a condition that affects prognoses of conservative endodontic treatments, as it affects primordial cellular functions related to this treatment.


Assuntos
Polpa Dentária , Interleucina-10 , Humanos , Polpa Dentária/metabolismo , Diferenciação Celular , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Proliferação de Células , Interleucina-6/metabolismo , Imunidade , Senescência Celular , Células Cultivadas
5.
Pharmaceutics ; 15(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37514049

RESUMO

Amphibian secretions have been extensively investigated for the production of bioactive molecules. Salamandrin-I is an antioxidant peptide, isolated from the skin secretion of the fire salamander, that has induced no toxicity in microglia or erythrocytes. Importantly, the administration of antioxidants may constitute an adequate therapeutic approach to cancer treatment. Here, with the purpose of better characterizing the therapeutic potential of salamandrin-I, we investigated whether this antioxidant peptide also exerts anticancer activity, using the human leukemia cell line HL-60 as a cancer model. Salamandrin-I treatment induced a significant reduction in HL-60 proliferation, which was accompanied by cell cycle arrest. Furthermore, the peptide-induced cell death showed a significant increase in the LDH release in HL-60 cells. The cellular toxicity exerted by salamandrin-I is possibly related to pyroptosis, since the HL-60 cells showed loss of mitochondrial membrane potential and hyperexpression of inflammasome components following the peptide treatment. This is the first demonstration of the anticancer potential of the salamandrin-I peptide. Such results are important, as they offer relevant insights into the field of cancer therapy and allow the design of future bioactive molecules using salamandrin-I as a template.

6.
J Nat Prod ; 85(12): 2695-2705, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36508333

RESUMO

In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.


Assuntos
Bothrops , Venenos de Crotalídeos , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Antioxidantes/farmacologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Peptídeos , Venenos de Serpentes
7.
Life Sci ; 311(Pt B): 121146, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336127

RESUMO

AIMS: Despite the development of therapeutic strategies for chronic lymphocytic leukemia (CLL), most patients remain incurable, relapse, or refractory to current treatments, indicating the need to expand the antineoplastic repertoire for this disease. Ezrin (EZR) is a known oncogene in solid tumors and plays a key role in cell survival and BCR-mediated signaling activation in B-cell lymphomas. However, its role in hematological neoplasms remains poorly explored. MAIN METHODS: The present study assessed EZR expression in samples from CLL patients and healthy donors and evaluated the cellular and molecular effects of a pharmacological EZR inhibitor, NSC305787, in CLL cellular models. KEY FINDINGS: EZR was highly expressed and positively associated with relevant signaling pathways related to CLL development and progression, including TP53, PI3K/AKT/mTOR, NF-κB, and MAPK. NSC305787 reduced viability, clonogenicity, and cell cycle progression and induced apoptosis in CLL cells. Pharmacological EZR inhibition also attenuated ERK, S6RP, and NF-κB activation, indicating that EZR not only associates with but also activates these signaling pathways in CLL. Ex vivo assays revealed that the EZR inhibition-induced cell viability reduction was independent of molecular risk and the Binet stage. SIGNIFICANCE: Our study provides insights into EZR as a pharmacological target in CLL, shedding light on a novel strategy for treating this disease.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430835

RESUMO

The culture of mesenchymal stem cells (MSCs) as spheroids promotes a more physiological cellular behavior, as it more accurately reflects the biological microenvironment. Nevertheless, mixed results have been found regarding the immunosuppressive properties of spheroid-cultured MSCs (3D-MSCs), the mechanisms of immunoregulation of 3D-MSCs being scarcely described at this point. In the present study, we constructed spheroids from MSCs and compared their immunosuppressive potential with that of MSCs cultured in monolayer (2D-MSCs). First, we evaluated the ability of 2D-MSCs and 3D-MSCs to control the activation and proliferation of T-cells. Next, we evaluated the percentage of regulatory T-cells (Tregs) after the co-culturing of peripheral blood mononuclear cells (PBMCs) with 2D-MSCs and 3D-MSCs. Finally, we investigated the expression of adhesion molecules, as well as the expressions of several anti-inflammatory transcripts in 2D-MSCs and 3D-MSCs maintained in both inflammatory and non-inflammatory conditions. Interestingly, our data show that several anti-inflammatory genes are up-regulated in 3D-MSCs, and that these cells can control T-cell proliferation. Nevertheless, 2D-MSCs are more efficient in suppressing the immune cell proliferation. Importantly, contrary to what was observed in 3D-MSCs, the expressions of ICAM-1 and VCAM-1 are significantly upregulated in 2D-MSCs exposed to an inflammatory environment. Furthermore, only 2D-MSCs are able to promote the enhancement of Tregs. Taken together, our data clearly show that the immunosuppressive potential of MSCs is significantly impacted by their shape, and highlights the important role of cell-cell adhesion molecules for optimal MSC immunomodulatory function.


Assuntos
Células-Tronco Mesenquimais , Linfócitos T Reguladores , Leucócitos Mononucleares , Células-Tronco Mesenquimais/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Anti-Inflamatórios/metabolismo
9.
Int J Pharm ; 627: 122231, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36167188

RESUMO

Naringenin is a bioflavonoid mainly found in citrus fruits. It presents many pharmacological benefits, including a remarkable anti-inflammatory activity, but its oral bioavailability is poor. To overcome this drawback, this work proposes a transdermal administration of such bioflavonoid, considering its use in the chronic treatment of inflammatory conditions. For this, it aims to develop a chitosan-based film that guarantees a consistent transdermal delivery of the drug. First, naringenin's in vitro anti-inflammatory effect on T-cell proliferation was evaluated, followed by research on the modulation of gene expression for inflammatory factors in peripheral blood mononuclear cells. Chitosan films were then prepared and characterized. Afterward, naringenin release profile from a selected film was determined as well as the drug permeation across porcine skin provided by the film. Naringenin induced the expression of the anti-inflammatory factors IL-10 and TGF-ß1 while inhibiting the expression of the pro-inflammatory cytokine IL-1ß and limiting T-cell proliferation. The chitosan film was successfully developed, and the drug was progressively released to the physiological media following both first order and Korsmeyer-Peppas kinetics. When topically applied, the chitosan film guaranteed a constant and continuous diffusion of naringenin across the skin over 72 h. Indeed, the permeation flux of naringenin was 0.30 ± 0.01 µg/cm2/h, which means a concentration in the receptor solution 14-fold (p < 0.05) higher than that provided by the drug solution. Thus, the chitosan film represents a promising transdermal alternative for the long-term treatment of inflammatory conditions using naringenin.


Assuntos
Quitosana , Flavanonas , Suínos , Animais , Administração Cutânea , Quitosana/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Leucócitos Mononucleares , Interleucina-10/metabolismo , Flavanonas/farmacologia , Pele/metabolismo , Preparações Farmacêuticas/metabolismo , Sistemas de Liberação de Medicamentos
11.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460166

RESUMO

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
12.
Front Oncol ; 12: 858425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419291

RESUMO

The development of immunotherapeutic approaches for the treatment of melanoma requires a better understanding of immunoescape mechanisms of tumor cells and how they interact with other tumor-resident cell types. Here, we evaluated how the conditioned media of resting (rCM) and immune-activated PBMCs (iCM) influence the ability of a metastatic melanoma cell line (MeWo) to control T-cells function. MeWo cells were expanded in RPMI, rCM, or iCM and the secretome generated after cell expansion was identified as MeSec (RPMI), niSec (non-inflammatory), or iSec (inflammatory secretome), respectively. Then, the immunomodulatory potential of such secretomes was tested in PHA-activated PBMCs. iCM induced higher levels of IFN-γ and IL-10 in treated melanoma cells compared to rCM, as well as higher IDO and PD-L1 expression. The iSec was able to inhibit T-cell activation and proliferation. Interestingly, PBMCs treated with iSec presented a reduced expression of the regulators of Th1 and Th2 responses T-BET and GATA-3, as well as low expression of IFN-γ, and co-stimulatory molecules TIM-3 and LAG-3. Importantly, our findings show that melanoma may benefit from an inflammatory microenvironment to enhance its ability to control the T-cell response. Interestingly, such an immunomodulatory effect involves the inhibition of the checkpoint molecules LAG-3 and TIM-3, which are currently investigated as important therapeutic targets for melanoma treatment. Further studies are needed to better understand how checkpoint molecules are modulated by paracrine and cell contact-dependent interaction between melanoma and immune cells. Such advances are fundamental for the development of new therapeutic approaches focused on melanoma immunotherapy.

13.
Clin Immunol Commun ; 2: 172-176, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38013967

RESUMO

The decline in vaccine efficacy and the risk of reinfection by SARS-CoV-2 make new studies important to better characterize the immune response against the virus and its components. Here, we investigated the pattern of activation of T-cells and the expression of inflammatory factors by PBMCs obtained from naïve and previously infected subjects following COVID-19 vaccination, after PBMCs stimulation with S1, RBD, and N-RBD SARS-CoV-2 proteins. PBMCs showed low levels of ACE2 and TMPRSS2 transcripts, which were not modulated by the exposure of these cells to SARS-CoV-2 proteins. Compared to S1 and RBD, N-RBD stimulation showed a greater ability to stimulate T-cell reactivity, according to CD25 and CD69 markers. Interestingly, T-cell reactivity was more pronounced in vaccinated subjects with prior SARS-CoV-2 infection than in vaccinated donors who never had been diagnosed with COVID-19. Finally, N-RBD stimulation promoted greater expression of IL-6 and IFN-γ in PBMCs, which reinforces the greater immunogenic potential of this protein in the vaccinated subjects. These data suggest that PBMCs from previously infected and vaccinated subjects are more reactive than those derived from just vaccinated donors. Moreover, the N-RBD together viral proteins showed a greater stimulatory capacity than S1 and RBD viral proteins.

14.
Pharmacol Ther ; 233: 108021, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34637839

RESUMO

Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and ß-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.


Assuntos
Anti-Infecciosos , Células-Tronco Mesenquimais , Vírus , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Antimicrobianos , Humanos
15.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753356

RESUMO

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Assuntos
Antioxidantes , Água , Animais , Antioxidantes/análise , Anuros/fisiologia , Humanos , Mamíferos , Peptídeos/análise , Pele , Água/análise
17.
Toxicol In Vitro ; 69: 104992, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889036

RESUMO

Euchromatic histone-lysine N-methyltransferase 1 (EHMT1) and EHMT2 are upregulated in various human cancers, and their deregulation is associated with tumor development and progression. In this paper, we investigated the expression level of EHMT1/EHMT2 in acute lymphoblastic leukemia (ALL) and whether the modulation of these enzymes could have any cellular or molecular impact on ALL cells. For this, we used UNC0646 as a priming strategy to target EHMT1/EHMT2 and investigated its effect on proliferation and cell viability of Jurkat cells by MTT assay. Then, considering the IC50 and IC75, cellular death was determined by Annexin V/PI staining using flow cytometry. Finally, we investigated by RT-PCR the molecular bases that could be involved in the observed effects. Interestingly, accessing the International Microarray Innovations in Leukemia (MILE) study group, we detected that both EHMT1 and EHMT2 are overexpressed in ALL. More important, we determined that inhibition of EHMT1/EHMT2 significantly decreased Jurkat cell viability in a dose-dependent manner. Accordingly, we observed that inhibition of EHMT1/EHMT2 promoted Jurkat cell death, which was accompanied by increased expression of P53, TP73, BAX, and MDM4. These results clearly indicate that inhibition of EHMT1/EHMT2 induces pro-apoptotic gene expression in ALL and promotes cell death. More importantly, the modulation of these histone methyltransferases may be a promising epigenetic target for ALL treatment.


Assuntos
Regulação Leucêmica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Morte Celular , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Epigênese Genética , Humanos , Células Jurkat
18.
Front Immunol ; 11: 1563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719683

RESUMO

COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus , Surtos de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Pandemias , Pneumonia Viral , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Humanos , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2
19.
Stem Cell Res Ther ; 11(1): 156, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299501

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) therapy is an important alternative for GVHD treatment, but a third of patients fail to respond to such therapy. Therefore, strategies to enhance the immunosuppressive potential of MSCs constitute an active area of investigation. Here, we proposed an innovative priming strategy based on the plasma obtained from GVHD patients and tested whether this approach could enhance the immunosuppressive capacity of MSCs. METHODS: We obtained the plasma from healthy as well as acute (aGVHD) and chronic (cGVHD) GVHD donors. Plasma samples were characterized according to the TNF-α, IFN-γ, IL-10, IL-1ß, IL-12p40, and IL-15 cytokine levels. The MSCs primed with such plasmas were investigated according to surface markers, morphology, proliferation, mRNA expression, and the capacity to control T cell proliferation and Treg generation. RESULTS: Interestingly, 57% of aGVHD and 33% of cGVHD plasmas significantly enhanced the immunosuppressive potential of MSCs. The most suppressive MSCs presented altered morphology, and those primed with cGHVD displayed a pronounced overexpression of ICAM-1 on their surface. Furthermore, we observed that the ratio of IFN-γ to IL-10 cytokine levels in the plasma used for MSC priming was significantly correlated with higher suppressive potential and Treg generation induction by primed MSCs, regardless of the clinical status of the donor. CONCLUSIONS: This work constitutes an important proof of concept which demonstrates that it is possible to prime MSCs with biological material and also that the cytokine levels in the plasma may affect the MSC immunosuppressive potential, serving as the basis for the development of new therapeutic approaches for the treatment of immune diseases.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Citocinas , Humanos , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa
20.
Int Immunopharmacol ; 79: 106172, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31926480

RESUMO

PURPOSE: Mesenchymal Stem Cells (MSCs) can interact with and modulate the functions of all immune cells, suppressing both the innate and adaptive immune responses. Currently, most of the in vitro studies which have led to the description of MSC properties have resulted from MSC culture in the presence of fetal bovine serum (FBS), in spite of the recognition of FBS limitations and attempts to substitute this component from the MSC media. METHODS: Herein, we compare FBS and Platelet Poor Plasma (PPP) as MSC media supplements, according to Adipose-derived MSC (AMSC) phenotype, proliferation and immunoregulatory mechanisms. RESULTS: Interestingly, despite maintaining the classic phenotypic profile of MSCs, PPP cultured AMSCs showed impaired proliferative potential. Furthermore, our results clearly show that AMSC culture with PPP leads to decreased expression of soluble immunosuppressive factors, which resulted in decreased capacity of inducing regulatory T-cells (Tregs) generation by these cells. In contrast, PPP supplementation promoted enhanced VCAM-1 and ICAM-1 expression on AMSC surface. Therefore, AMSCs cultured with PPP showed limited potential to produce soluble immunomodulatory factors, indicating a reduced capacity to control the immune system thought paracrine activity. CONCLUSION: Overall, our data sheds light on the importance of culture media supplementation for MSC immunomodulatory behavior, as well as serving as an alert regarding the complexity of replacing FBS in MSC culture.


Assuntos
Meios de Cultura/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasma/metabolismo , Animais , Plaquetas/citologia , Bovinos , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...