Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 235: 112548, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067596

RESUMO

Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.


Assuntos
Anti-Infecciosos , Praguicidas , Agricultura , Antibacterianos , Anti-Infecciosos/farmacologia , Fungos , Fármacos Fotossensibilizantes/farmacologia , Plantas
2.
Mol Plant Pathol ; 20(12): 1619-1635, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512371

RESUMO

Several Phyllosticta species are known as pathogens of Citrus spp., and are responsible for various disease symptoms including leaf and fruit spots. One of the most important species is P. citricarpa, which causes a foliar and fruit disease called citrus black spot. The Phyllosticta species occurring on citrus can most effectively be distinguished from P. citricarpa by means of multilocus DNA sequence data. Recent studies also demonstrated P. citricarpa to be heterothallic, and reported successful mating in the laboratory. Since the domestication of citrus, different clones of P. citricarpa have escaped Asia to other continents via trade routes, with obvious disease management consequences. This pathogen profile represents a comprehensive literature review of this pathogen and allied taxa associated with citrus, focusing on identification, distribution, genomics, epidemiology and disease management. This review also considers the knowledge emerging from seven genomes of Phyllosticta spp., demonstrating unknown aspects of these species, including their mating behaviour. TAXONOMY: Phyllosticta citricarpa (McAlpine) Aa, 1973. Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Botryosphaeriales, Family Phyllostictaceae, Genus Phyllosticta, Species citricarpa. HOST RANGE: Confirmed on more than 12 Citrus species, Phyllosticta citricarpa has only been found on plant species in the Rutaceae. DISEASE SYMPTOMS: P. citricarpa causes diverse symptoms such as hard spot, virulent spot, false melanose and freckle spot on fruit, and necrotic lesions on leaves and twigs. USEFUL WEBSITES: DOE Joint Genome Institute MycoCosm portals for the Phyllosticta capitalensis (https://genome.jgi.doe.gov/Phycap1), P. citriasiana (https://genome.jgi.doe.gov/Phycit1), P. citribraziliensis (https://genome.jgi.doe.gov/Phcit1), P. citrichinaensis (https://genome.jgi.doe.gov/Phcitr1), P. citricarpa (https://genome.jgi.doe.gov/Phycitr1, https://genome.jgi.doe.gov/Phycpc1), P. paracitricarpa (https://genome.jgi.doe.gov/Phy27169) genomes. All available Phyllosticta genomes on MycoCosm can be viewed at https://genome.jgi.doe.gov/Phyllosticta.


Assuntos
Ascomicetos/fisiologia , Citrus/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Filogeografia , Doenças das Plantas/microbiologia
3.
Plant Dis ; 103(5): 913-921, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30893025

RESUMO

Citrus black spot (CBS), caused by Phyllosticta citricarpa, affects different citrus species worldwide. CBS is mainly expressed as false melanose and hard spot symptoms. There is no consensus in the literature about the period when fruit are susceptible to P. citricarpa infection and the length of the CBS incubation period. Therefore, this study aimed to assess the influence of sweet orange variety, fruit age, and inoculum concentration on the incubation period and the expression of different CBS symptoms. Attached fruit of Hamlin, Pera, and Valencia sweet orange at 1.5, 3.0, 5.0, and 7.0 cm diameter were inoculated with suspensions containing 103 and 105 conidia/ml of P. citricarpa. The percent conidial germination was quantified using scanning electron microscopy. The CBS symptoms on fruit were assessed monthly. The four diameters did not significantly affect conidial germination on the inoculated fruit, although CBS incidences were lower when larger fruit were inoculated. Hard spot symptoms on sweet orange fruit did not develop from the false melanose symptoms and vice versa. The incubation periods for false melanose were shorter than those observed for hard spot. False melanose began to appear 44 days after inoculation, but hard spot only formed at 113 days or later. Incubation periods were shorter and incidences of false melanose were higher following inoculation with higher inoculum concentration and smaller fruit diameter. The incubation period of hard spot varied among varieties and fruit diameters. However, there was no relationship between hard spot incidence and variety. This study provides a better understanding of the factors affecting the variation in the CBS incubation period and disease incidence on fruit.


Assuntos
Ascomicetos , Citrus sinensis , Frutas , Ascomicetos/fisiologia , Citrus sinensis/genética , Citrus sinensis/microbiologia , Frutas/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...