Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 187: 105188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127063

RESUMO

Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals - Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor - Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.


Assuntos
Agentes de Controle Biológico , Glycine max , Mariposas , Praguicidas , Animais , Aprotinina/farmacologia , Agentes de Controle Biológico/farmacologia , Bovinos , Hidrogênio/farmacologia , Larva , Peptídeo Hidrolases/metabolismo , Praguicidas/farmacologia , Inibidores de Proteases/farmacologia , Tripsina , Inibidores da Tripsina/farmacologia
2.
Pestic Biochem Physiol ; 184: 105107, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715046

RESUMO

The design and production of molecules capable of mimicking the binding or/and functional sites of proteins inhibitors represent a promising strategy for the exploration and modulation of gut trypsin function in insect pests, specifically Lepidoptera. Here, for the first time, we characterized the trypsin activity present in the gut, performance and development of Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae when exposed to arginine-containing dipeptides. In silico assessment showed that arginine-containing dipeptides have a greater affinity for the active site of A. gemmatalis trypsins than lysine-containing peptides due to the presence of the double-charged guanidinium group that enhances the interaction at the S1 subsite of trypsins. Furthermore, the inhibitory and anti-insect potential of the peptides was demonstrated through kinetic and larval life cycle parameters, respectively. These dipeptides showed structural stability, binding to the active site, corroborated in vitro (competitive inhibition), and significant reduction of trypsin enzyme activity in the gut, survival, and weight of the A. gemmatalis larvae. Our findings reinforce the idea that small peptides are promising candidates for lepidopteran pest management. The optimization of DI2 and DI1 peptides, enhancing uptake and affinity to trypsins, may turn the use of these molecules feasible in agriculture.


Assuntos
Fabaceae , Mariposas , Animais , Arginina/farmacologia , Dipeptídeos/farmacologia , Insetos , Larva/metabolismo , Mariposas/metabolismo , Glycine max/metabolismo , Tripsina
3.
Arch Insect Biochem Physiol ; 109(3): e21864, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982841

RESUMO

New approaches are needed to reduce risks to the environment and natural enemies and to avoid or delay the onset of insecticide resistance. The use of insecticides based on proteinase inhibitors of hemolymph is an alternative for the control of Lepidoptera pests primarily by having low toxicity and short persistence in the environment. Thus, in this study, we describe the purification process and identification of protease inhibitors from hemolymph Anticarsia gemmatalis and their activities against trypsin enzymes. Furthermore, the three-dimensional (3D) structure of the inhibitor and binding mode to trypsin enzymes was determined, and the stability of the inhibitory activity in several pHs and temperature values was evaluated. The inhibitor was characterized as a serpin family inhibitor and named A. gemmatalis hemolymph serpin inhibitor (AHSI), with an approximate mass of 38 ± 2 kDa, highly stable to temperature and pH variations, and with inhibitory capacity on bovine trypsin and gut trypsin of A. gemmatalis demonstrated by calculated Ki values and affinity energy through molecular docking, being a reversible competitive inhibitor that binds to the active site of trypsin-like enzymes. We conclude that the AHSI inhibitor identified from the hemolymph of the soybean pest A. gemmatalis preserves the original structure of the serpin family with a good overall stereochemical quality confirmed from molecular modeling. The docking analysis showed that the reactive site of the inhibitor is in contact with the catalytic cavity of the trypsin with high-affinity energy.


Assuntos
Lepidópteros , Mariposas , Animais , Bovinos , Hemolinfa , Larva , Simulação de Acoplamento Molecular , Inibidores de Proteases , Glycine max , Tripsina
4.
Artigo em Inglês | MEDLINE | ID: mdl-28762531

RESUMO

Purification of active trypsin in the digestive process of insects is essential for the development of potent protease inhibitors (PIs) as an emerging pest control technology and research into insect adaptations to dietary PIs. An important aspect is the presence of proteolytic microorganisms, which contribute to host nutrition. Here, we purified trypsins produced by bacteria Bacillus cereus, Enterococcus mundtii, Enterococcus gallinarum, and Staphylococcus xylosus isolated from the midgut of Anticarsia gemmatalis. The trypsins had a molecular mass of approximately 25 kDa. The enzymes showed increased activity at 40°C, and they were active at pH values 7.5-10. Aprotinin, bis-benzamidine, and soybean Kunitz inhibitor (SKTI) significantly inhibited trypsin activity. The l-1-tosyl-amido-2-phenylethylchloromethyl ketone (TPCK), pepstatin A, E-64, ethylenediamine tetraacetic acid, and calcium ions did not affect the enzyme activity at the concentrations tested. We infer the purified trypsins do not require calcium ions, by which they differ from the trypsins of other microorganisms and the soluble and insoluble trypsins characterized from A. gemmatalis. These data suggest the existence of different isoforms of trypsin in the velvetbean caterpillar midguts.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Mariposas/enzimologia , Tripsina/isolamento & purificação , Animais , Proteínas de Bactérias/metabolismo , Trato Gastrointestinal/microbiologia , Cinética , Mariposas/microbiologia , Tripsina/metabolismo , Inibidores da Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA