Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 5(4): 102, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25145631

RESUMO

INTRODUCTION: The objective of this work was to evaluate the efficacy of placenta-derived mesenchymal stem cell (MSC) therapy in a mouse model of myocardial infarction (MI). Since MSCs can be obtained from two different regions of the human term placenta (chorionic plate or villi), cells obtained from both these regions were compared so that the best candidate for cell therapy could be selected. METHODS: For the in vitro studies, chorionic plate MSCs (cp-MSCs) and chorionic villi MSCs (cv-MSCs) were extensively characterized for their genetic stability, clonogenic and differentiation potential, gene expression, and immunophenotype. For the in vivo studies, C57Bl/6 mice were submitted to MI and, after 21 days, received weekly intramyocardial injections of cp-MSCs for 3 weeks. Cells were also stably transduced with a viral construct expressing luciferase, under the control of the murine stem cell virus (MSCV) promoter, and were used in a bioluminescence assay. The expression of genes associated with the insulin signaling pathway was analyzed in the cardiac tissue from cp-MSCs and placebo groups. RESULTS: Morphology, differentiation, immunophenotype, and proliferation were quite similar between these cells. However, cp-MSCs had a greater clonogenic potential and higher expression of genes related to cell cycle progression and genome stability. Therefore, we considered that the chorionic plate was preferable to the chorionic villi for the isolation of MSCs. Sixty days after MI, cell-treated mice had a significant increase in ejection fraction and a reduction in end-systolic volume. This improvement was not caused by a reduction in infarct size. In addition, tracking of cp-MSCs transduced with luciferase revealed that cells remained in the heart for 4 days after the first injection but that the survival period was reduced after the second and third injections. Quantitative reverse transcription-polymerase chain reaction revealed similar expression of genes involved in the insulin signaling pathway when comparing cell-treated and placebo groups. CONCLUSIONS: Improvement of cardiac function by cp-MSCs did not require permanent engraftment and was not mediated by the insulin signaling pathway.


Assuntos
Insulina/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/terapia , Animais , Volume Cardíaco , Diferenciação Celular , Forma Celular , Células Cultivadas , Feminino , Humanos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Transdução de Sinais , Volume Sistólico
2.
PLoS One ; 7(6): e38349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701629

RESUMO

In the midgut of the mosquito Aedes aegypti, a vector of dengue and yellow fever, an intense release of heme and iron takes place during the digestion of a blood meal. Here, we demonstrated via chromatography, light absorption and mass spectrometry that xanthurenic acid (XA), a product of the oxidative metabolism of tryptophan, is produced in the digestive apparatus after the ingestion of a blood meal and reaches milimolar levels after 24 h, the period of maximal digestive activity. XA formation does not occur in the White Eye (WE) strain, which lacks kynurenine hydroxylase and accumulates kynurenic acid. The formation of XA can be diminished by feeding the insect with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl] benzenesulfonamide (Ro-61-8048), an inhibitor of XA biosynthesis. Moreover, XA inhibits the phospholipid oxidation induced by heme or iron. A major fraction of this antioxidant activity is due to the capacity of XA to bind both heme and iron, which occurs at a slightly alkaline pH (7.5-8.0), a condition found in the insect midgut. The midgut epithelial cells of the WE mosquito has a marked increase in occurrence of cell death, which is reversed to levels similar to the wild type mosquitoes by feeding the insects with blood supplemented with XA, confirming the protective role of this molecule. Collectively, these results suggest a new role for XA as a heme and iron chelator that provides protection as an antioxidant and may help these animals adapt to a blood feeding habit.


Assuntos
Aedes/fisiologia , Antioxidantes/metabolismo , Quelantes/metabolismo , Digestão/fisiologia , Trato Gastrointestinal/fisiologia , Xanturenatos/metabolismo , Aedes/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Trato Gastrointestinal/metabolismo , Heme/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Espectrometria de Massas , Estrutura Molecular , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Xanturenatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...