Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 146: 25-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25176449

RESUMO

Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 µM and 60 µM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.


Assuntos
Adenosina Trifosfatases/metabolismo , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/parasitologia , Moduladores de Tubulina/farmacologia , Vimblastina/farmacologia , Animais , Cricetinae , Resistência a Medicamentos , Humanos , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Fenótipo , Organismos Livres de Patógenos Específicos
2.
Int J Syst Evol Microbiol ; 57(Pt 6): 1318-1322, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17551050

RESUMO

Phylogenetic analysis and phenotypic characterization were used to assign a multicellular magnetotactic prokaryote the name 'Candidatus Magnetoglobus multicellularis'. 'Candidatus Magnetoglobus multicellularis' lives in a large hypersaline coastal lagoon from Brazil and has properties that are unique among prokaryotes. It consists of a compact assembly or aggregate of flagellated bacterial cells, highly organized in a sphere, that swim in either helical or straight trajectories. The life cycle of 'Candidatus Magnetoglobus multicellularis' is completely multicellular, in which one aggregate grows by enlarging the size of its cells and approximately doubling the volume of the whole organism. Cells then divide synchronously, maintaining the spherical arrangement; finally the cells separate into two identical aggregates. Phylogenetic 16S rRNA gene sequence analysis showed that 'Candidatus Magnetoglobus multicellularis' is related to the dissimilatory sulfate-reducing bacteria within the Deltaproteobacteria and to other previously described, but not yet well characterized, multicellular magnetotactic prokaryotes.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Água do Mar/microbiologia , Aderência Bacteriana , Brasil , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Deltaproteobacteria/citologia , Deltaproteobacteria/fisiologia , Flagelos/fisiologia , Genes de RNAr , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...