Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Sci Adv ; 10(25): eadn8350, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905332

RESUMO

The suprachiasmatic nucleus (SCN) sets the phase of oscillation throughout the brain and body. Anatomical evidence reveals a portal system linking the SCN and the organum vasculosum of the lamina terminalis (OVLT), begging the question of the direction of blood flow and the nature of diffusible signals that flow in this specialized vasculature. Using a combination of anatomical and in vivo two-photon imaging approaches, we unequivocally show that blood flows unidirectionally from the SCN to the OVLT, that blood flow rate displays daily oscillations with a higher rate at night than in the day, and that circulating vasopressin can access portal vessels. These findings highlight a previously unknown central nervous system communication pathway, which, like that of the pituitary portal system, could allow neurosecretions to reach nearby target sites in OVLT, avoiding dilution in the systemic blood. In both of these brain portal pathways, the target sites relay signals broadly to both the brain and the rest of the body.


Assuntos
Núcleo Supraquiasmático , Núcleo Supraquiasmático/fisiologia , Animais , Camundongos , Hipotálamo/metabolismo , Hipotálamo/irrigação sanguínea , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Encéfalo/metabolismo , Sistema Porta , Masculino , Vasopressinas/metabolismo , Vasopressinas/sangue , Circulação Cerebrovascular/fisiologia , Ritmo Circadiano/fisiologia
2.
J Biol Rhythms ; 39(2): 135-165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366616

RESUMO

It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.


Assuntos
Ritmo Circadiano , Neuropeptídeos , Ritmo Circadiano/fisiologia , Neuropeptídeos/metabolismo , Núcleo Supraquiasmático/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Liberador de Gastrina/metabolismo
3.
J Biol Rhythms ; 38(6): 571-585, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37553858

RESUMO

Transplant studies demonstrate unequivocally that the suprachiasmatic nucleus (SCN) produces diffusible signals that can sustain circadian locomotor rhythms. There is a vascular portal pathway between the SCN and the organum vasculosum of the lamina terminalis in mouse brain. Portal pathways enable low concentrations of neurosecretions to reach specialized local targets without dilution in the systemic circulation. To explore the SCN vasculature and the capillary vessels whereby SCN neurosecretions might reach portal vessels, we investigated the blood vessels (BVs) of the core and shell SCN. The arterial supply of the SCN differs among animals, and in some animals, there are differences between the 2 sides. The rostral SCN is supplied by branches from either the superior hypophyseal artery (SHpA) or the anterior cerebral artery or the anterior communicating artery. The caudal SCN is consistently supplied by the SHpA. The rostral SCN is drained by the preoptic vein, while the caudal is drained by the basal vein, with variations in laterality of draining vessels. In addition, several key features of the core and shell SCN regions differ: Median BV diameter is significantly smaller in the shell than the core based on confocal image measurements, and a similar trend occurs in iDISCO-cleared tissue. In the cleared tissue, whole BV length density and surface area density are significantly greater in the shell than the core. Finally, capillary length density is also greater in the shell than the core. The results suggest three hypotheses: First, the distinct arterial and venous systems of the rostral and caudal SCN may contribute to the in vivo variations of metabolic and neural activities observed in SCN networks. Second, the dense capillaries of the SCN shell are well positioned to transport blood-borne signals. Finally, variations in SCN vascular supply and drainage may contribute to inter-animal differences.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Camundongos , Animais , Hipotálamo
4.
J Neuroendocrinol ; 35(9): e13245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36880566

RESUMO

A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.


Assuntos
Neurônios , Organum Vasculosum , Camundongos , Animais , Neurônios/metabolismo , Organum Vasculosum/fisiologia , Núcleo Supraquiasmático/fisiologia , Hipotálamo/metabolismo , Hipófise
5.
Adv Sci (Weinh) ; 10(2): e2204190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394167

RESUMO

Systemic glucose metabolism and insulin activity oscillate in response to diurnal rhythms and nutrient availability with the necessary involvement of adipose tissue to maintain metabolic homeostasis. However, the adipose-intrinsic regulatory mechanism remains elusive. Here, the dynamics of PPARγ acetylation in adipose tissue are shown to orchestrate metabolic oscillation in daily rhythms. Acetylation of PPARγ displays a diurnal rhythm in young healthy mice, with the peak at zeitgeber time 0 (ZT0) and the trough at ZT18. This rhythmic pattern is deranged in pathological conditions such as obesity, aging, and circadian disruption. The adipocyte-specific acetylation-mimetic mutation of PPARγ K293Q (aKQ) restrains adipose plasticity during calorie restriction and diet-induced obesity, associated with proteolysis of a core circadian component BMAL1. Consistently, the rhythmicity in glucose tolerance and insulin sensitivity is altered in aKQ and the complementary PPARγ deacetylation-mimetic K268R/K293R (2KR) mouse models. Furthermore, the PPARγ acetylation-sensitive downstream target adipsin is revealed as a novel diurnal factor that destabilizes BMAL1 and mediates metabolic rhythms. These findings collectively signify that PPARγ acetylation is a hinge connecting adipose plasticity and metabolic rhythms, the two determinants of metabolic health.


Assuntos
Fatores de Transcrição ARNTL , PPAR gama , Camundongos , Animais , PPAR gama/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Acetilação , Obesidade/metabolismo , Tecido Adiposo/metabolismo
6.
Front Behav Neurosci ; 16: 877256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722187

RESUMO

Background: Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed: To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed: The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion: The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.

7.
Nat Commun ; 12(1): 5643, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561434

RESUMO

There is only one known portal system in the mammalian brain - that of the pituitary gland, first identified in 1933 by Popa and Fielding. Here we describe a second portal pathway in the mouse linking the capillary vessels of the brain's clock suprachiasmatic nucleus (SCN) to those of the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ. The localized blood vessels of portal pathways enable small amounts of important secretions to reach their specialized targets in high concentrations without dilution in the general circulatory system. These brain clock portal vessels point to an entirely new route and targets for secreted SCN signals, and potentially restructures our understanding of brain communication pathways.


Assuntos
Encéfalo/fisiologia , Órgãos Circunventriculares/fisiologia , Hipotálamo/fisiologia , Sistema Porta/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Encéfalo/irrigação sanguínea , Ritmo Circadiano/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Modelos Biológicos , Núcleo Supraquiasmático/irrigação sanguínea
8.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385151

RESUMO

Biological neural networks operate at several levels of granularity, from the individual neuron to local neural circuits to networks of thousands of cells. The daily oscillation of the brain's master clock in the suprachiasmatic nucleus (SCN) rests on a yet to be identified network of connectivity among its ∼20,000 neurons. The SCN provides an accessible model to explore neural organization at several levels of organization. To relate cellular to local and global network behaviors, we explore network topology by examining SCN slices in three orientations using immunochemistry, light and confocal microscopy, real-time imaging, and mathematical modeling. Importantly, the results reveal small local groupings of neurons that form intermediate structures, here termed "phaseoids," which can be identified through stable local phase differences of varying magnitude among neighboring cells. These local differences in phase are distinct from the global phase relationship, namely that between individual cells and the mean oscillation of the overall SCN. The magnitude of the phaseoids' local phase differences is associated with a global phase gradient observed in the SCN's rostral-caudal extent. Modeling results show that a gradient in connectivity strength can explain the observed gradient of phaseoid strength, an extremely parsimonious explanation for the heterogeneous oscillatory structure of the SCN.


Assuntos
Neurônios , Núcleo Supraquiasmático , Anisotropia , Ritmo Circadiano
10.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33472866

RESUMO

While it is well established that there are robust circadian rhythms of arginine vasopressin (AVP) in the cerebrospinal fluid (CSF), the route whereby the peptide reaches the CSF is not clear. A , AVP neurons constitute the largest fraction of the SCN neuronal population. Here, we show that processes of AVP-expressing SCN neurons cross the epithelium of the 3rd ventricular wall to reach the CSF (black arrows). Additionally, we report rostro-caudal differences in AVP neuron size and demonstrate that the localization of cells expressing the clock protein PER2 extend beyond the AVP population, thereby indicating that the size of this nucleus is somewhat larger than previously understood. B , Following lateral ventricle (LV) injection of cholera toxin ß subunit (CTß ; magenta) the retrograde tracer is seen in AVP neurons of the SCN, supporting the anatomical evidence that AVP neuronal processes directly contact the CSF.Arginine vasopressin (AVP) expressing neurons form the major population in the brain's circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). They participate in inter-neuronal coupling and provide an output signal for synchronizing daily rhythms. AVP is present at high concentrations in the cerebrospinal fluid (CSF) and fluctuates on a circadian timescale. While it is assumed that rhythms in CSF AVP are of SCN origin, a route of communication between these compartments has not been delineated. Using immunochemistry (ICC) and cell filling techniques, we determine the morphology and location of AVP neurons in mouse and delineate their axonal and dendritic processes. Cholera toxin ß subunit (CTß) tracer injected into the lateral ventricle tests whether AVP neurons communicate with CSF. Most importantly, the results indicate that AVP neurons lie in close proximity to the third ventricle, and their processes cross the ventricular wall into the CSF. We also report that contrary to widely held assumptions, AVP neurons do not fully delineate the SCN borders as PER2 expression extends beyond the AVP region. Also, AVP neurons form a rostral prong originating in the SCN medial-most and ventral-most aspect. AVP is lacking in the mid-dorsal shell but does occur at the base of the SCN just above the optic tract. Finally, neurons of the rostral SCN are smaller than those lying caudally. These findings extend our understanding of AVP signaling potential, demonstrate the heterogeneity of AVP neurons, and highlight limits in using this peptide to delineate the mouse SCN.


Assuntos
Arginina Vasopressina , Relógios Circadianos , Animais , Arginina Vasopressina/metabolismo , Ritmo Circadiano , Camundongos , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo
11.
Eur J Neurosci ; 51(1): 71-81, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362616

RESUMO

Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.


Assuntos
Comportamento Alimentar , Motivação , Receptores de Dopamina D2 , Animais , Ritmo Circadiano , Corpo Estriado/metabolismo , Alimentos , Camundongos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
12.
Eur J Neurosci ; 51(12): 2314-2328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31814204

Assuntos
Ritmo Circadiano
13.
Eur J Neurosci ; 51(6): 1504-1513, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31502721

RESUMO

Zinc is important in neurogenesis, but excessive levels can cause apoptosis and other pathologies leading to cognitive impairments. Mast cells are present in many brain regions including the hippocampus, an area rich in vesicular zinc. Mast cells contain zinc-rich granules and a well-developed mechanism for uptake of zinc ions; both features point to the potential for a role in zinc homeostasis. Prior work using the Timm stain supported this hypothesis, as increased labile zinc was detected in the hippocampus of mast cell-deficient mice compared to wild-type mice while no differences in total zinc were found between the two genotypes in the whole brain or other tissues. The current report further examines differences in zinc homeostasis between wild-type and mast cell-deficient mice by exploring the zinc transporter ZnT3, which transports labile zinc into synaptic vesicles. The first study used immunocytochemistry to localize ZnT3 within the mossy fibre layer of the hippocampus to determine whether there was differential expression of ZnT3 in wild-type versus mast cell-deficient mice. The second study used inductively coupled plasma mass spectrometry (ICP-MS) to determine total zinc content in the whole dentate gyrus of the two genotypes. The immunocytochemical results indicate that there are higher levels of ZnT3 localized to the mossy fibre layer of the dentate gyrus of mast cell-deficient mice than in wild-type mice. The ICP-MS data reveal no differences in total zinc in dentate gyrus as a whole. The results are consistent with the hypothesis that mast cells participate in zinc homeostasis at the level of synaptic vesicles.


Assuntos
Proteínas de Transporte de Cátions , Mastócitos , Animais , Proteínas de Transporte , Giro Denteado , Hipocampo , Camundongos
14.
Int J Dev Neurosci ; 75: 44-58, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059735

RESUMO

BACKGROUND: The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains the master circadian clock of the body and an unusually large number of cells expressing stem cell-related proteins. These seemingly undifferentiated cells may serve in entrainment of the SCN circadian clock to light cycles or allow it to undergo neural plasticity important for modifying its rhythmic output signals. These cells may also proliferate and differentiate into neurons or glia in response to episodic stimuli or developmental events requiring alterations in the SCN's control of physiology and behavior. PROBLEM: To characterize expression of stem cell related proteins in the SCN and the effects of stem-like cells on circadian rhythms. METHODS: Explant cultures of mouse SCN were maintained in medium designed to promote survival and growth of stem cells but not neuronal cells. Several stem cell marker proteins including SRY-box containing gene 2 (SOX2), nestin, vimentin, octamer-binding protein 4 (OCT4), and Musashi RNA-binding protein 2 (MSI2) were identified by immunocytochemistry in histological sections from adult mouse SCN and in cultures of microdissected SCN. A bioinformatics analysis located potential SCN targets of MSI2 and related RNA-binding proteins. RESULTS: Cells expressing stem cell markers proliferated in culture. Immunostained brain sections and bioinformatics supported the view that MSI2 regulates immature properties of SCN neurons, potentially providing flexibility in SCN neural circuits. Explant cultures had ongoing mitotic activity, indicated by proliferating-cell nuclear antigen, and extensive cell loss shown by propidium iodide staining. Cells positive for vasoactive intestinal polypeptide (VIP) that are highly enriched in the SCN were diminished in explant cultures. Despite neuronal cell loss, tissue remained viable for over 7 weeks in culture, as shown by bioluminescence imaging of explants prepared from SCN of Per1::luc transgenic mice. The circadian rhythm in SCN gene expression persisted in brain slice cultures in stem cell medium. Prominent, widespread expression of RNA-binding protein MSI2 supported the importance of posttranscriptional regulation in SCN functions and provided further evidence of stem-like cells. CONCLUSION: The results show that the SCN retains properties of immature neurons and these properties persist in culture conditions suitable for stem cells, where the SCN stem-like cells also proliferate. These properties may allow adaptive circadian rhythm adjustments. Further exploration should examine stem-like cells of the SCN in vivo, how they may affect circadian rhythms, and whether MSI2 serves as a master regulator of SCN stem-like properties.


Assuntos
Ritmo Circadiano/fisiologia , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Forma Celular/fisiologia , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Transgênicos , Nestina/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição SOXB1/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vimentina/metabolismo
15.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283813

RESUMO

A brain clock, constituted of ∼20,000 peptidergically heterogeneous neurons, is located in the hypothalamic suprachiasmatic nucleus (SCN). While many peptidergic cell types have been identified, little is known about the connections among these neurons in mice. We first sought to identify contacts among major peptidergic cell types in the SCN using triple-label fluorescent immunocytochemistry (ICC). To this end, contacts among vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and calretinin (CALR) cells of the core, and arginine vasopressin (AVP) and met-enkephalin (ENK) cells of the shell were analyzed. Some core-to-shell and shell-to-core communications are specialized. We found that in wild-type (WT) mice, AVP fibers make extremely sparse contacts onto VIP neurons but contacts in the reverse direction are numerous. In contrast, AVP fibers make more contacts onto GRP neurons than conversely. For the other cell types tested, largely reciprocal connections are made. These results point to peptidergic cell type-specific communications between core and shell SCN neurons. To further understand the impact of VIP-to-AVP communication, we next explored the SCN in VIP-deficient mice (VIP-KO). In these animals, AVP expression is markedly reduced in the SCN, but it is not altered in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Surprisingly, in VIP-KO mice, the number of AVP appositions onto other peptidergic cell types is not different from controls. Colchicine administration, which blocks AVP transport, restored the numbers of AVP neurons in VIP-KO to that of WT littermates. The results indicate that VIP has an important role in modulating AVP expression levels in the SCN in this mouse.


Assuntos
Arginina Vasopressina/metabolismo , Ritmo Circadiano/fisiologia , Conectoma , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Conectoma/métodos , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
16.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632871

RESUMO

The ability to sense time and anticipate events is critical for survival. Learned responses that allow anticipation of the availability of food or water have been intensively studied. While anticipatory behaviors also occur prior to availability of regularly available rewards, there has been relatively little work on anticipation of drugs of abuse, specifically methamphetamine (MA). In the present study, we used a protocol that avoided possible CNS effects of stresses of handling or surgery by testing anticipation of MA availability in animals living in their home cages, with daily voluntary access to the drug at a fixed time of day. Anticipation was operationalized as the amount of wheel running prior to MA availability. Mice were divided into four groups given access to either nebulized MA or water, in early or late day. Animals with access to MA, but not water controls, showed anticipatory activity, with more anticipation in early compared to late day and significant interaction effects. Next, we explored the neural basis of the MA anticipation, using c-FOS expression, in animals euthanized at the usual time of nebulization access. In the dorsomedial hypothalamus (DMH) and orbitofrontal cortex (OFC), the pattern of c-FOS expression paralleled that of anticipatory behavior, with significant main and interaction effects of treatment and time of day. The results for the lateral septum (LS) were significant for main effects and marginally significant for interaction effects. These studies suggest that anticipation of MA is associated with activation of brain regions important in circadian timing, emotional regulation, and decision making.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Antecipação Psicológica/fisiologia , Comportamento Animal/fisiologia , Estimulantes do Sistema Nervoso Central , Núcleo Hipotalâmico Dorsomedial/fisiopatologia , Hipotálamo/fisiopatologia , Metanfetamina , Córtex Pré-Frontal/fisiopatologia , Núcleos Septais/fisiopatologia , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Relógios Circadianos/fisiologia , Tomada de Decisões/fisiologia , Modelos Animais de Doenças , Núcleo Hipotalâmico Dorsomedial/metabolismo , Emoções/fisiologia , Hipotálamo/metabolismo , Masculino , Metanfetamina/administração & dosagem , Camundongos , Córtex Pré-Frontal/metabolismo , Núcleos Septais/metabolismo
17.
Physiol Behav ; 187: 6-12, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155247

RESUMO

A great number of stakeholders have a keen interest in issues surrounding sex differences. These participants in the discourse often use the same evidence to draw opposite conclusions, with implications for individuals and society as a whole. One part of the maelstrom and associated emotionality derives from confounds between the concepts of "sex" vs. "gender", even among professionals. Here, the oft-repeated point is made that evidence for gender differences can't be derived from the animal research, once the generally accepted conception of gender as a process unique to humans, is acknowledged. Nevertheless, considered at a more general level, the developmental and epigenetic mechanisms that give rise to differences in behavior among individuals and groups is exquisitely explored in animal studies but relatively poorly in research on humans. The focus on animal research here, starts with the fact that virtually each cell of the body has sex chromosomes (XX and XY), along with the intracellular genetic and cytoplasmic mechanisms associated with circadian (circa-about, dies-day) timing. The consequences of these sex×circadian interactions for physiology and behavior at cellular and higher levels of organization are considered in systems where compelling evidence is available. These include sex differences in the circadian timing system, the hypothalamic-pituitary-adrenal (HPA) axis, and in metabolism. The evidence highlights sex differences in cells throughout the body and thus has implications for higher level processes and systems such as sleep/wake patterns. In a more general sense, they point to mechanisms that could give rise to gender differences. In summary, the viewpoint presented here is that the circadian timing system can be used very elegantly to explore the contributions of genetic and hormonal sex differences on biological systems at many levels.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Relógios Circadianos/fisiologia , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipófise-Suprarrenal/citologia , Caracteres Sexuais , Cromatina Sexual , Animais , Epigênese Genética , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia
18.
Int J Mol Sci ; 18(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587098

RESUMO

A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.


Assuntos
Metalotioneína/genética , Metalotioneína/metabolismo , Neurônios/metabolismo , Animais , Giro Denteado/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Íons/metabolismo , Íons/farmacologia , Metalotioneína 3 , Metais/metabolismo , Metais/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Proteostase/genética , Zinco/metabolismo
19.
Eur J Neurosci ; 45(11): 1357-1367, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27740710

RESUMO

The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving 'clock' genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences remains unknown. To explore these clock proteins in distinct SCN regions, we assessed their expression through the rostro-caudal extent of the SCN in sagittal sections. We developed an automated method for tracking three fluorophores in digital images of sections triply labeled for PER1, PER2, and gastrin-releasing peptide (used to locate the core). In the SCN as a whole, neurons expressing high levels of PER2 were concentrated in the rostral, rostrodorsal, and caudal portions of the nucleus, and those expressing high levels of PER1 lay in a broad central area. Within these overall patterns, adjacent cells differed in expression levels of the two proteins. The results demonstrate spatially distinct localization of high PER1 vs. PER2 expression, raising the possibility that their distribution is functionally significant in encoding and communicating temporal information. The findings provoke the question of whether there are fundamental differences in PER1/2 levels among SCN neurons and/or whether topographical differences in protein expression are a product of SCN network organization rather than intrinsic differences among neurons.


Assuntos
Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Relógios Circadianos , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia
20.
Trends Neurosci ; 39(6): 405-419, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27090429

RESUMO

A master brain clock, localized to the hypothalamic suprachiasmatic nucleus (SCN), coordinates daily rhythms of physiology and behavior. Within the SCN, interconnected individual neurons are oscillators that, as an ensemble, function to send a coherent timing signal to the brain and body. However, individually, these neurons display different amplitudes, periods, and phases of oscillation. The dynamic properties of the SCN have been characterized over several spatial levels of analysis, from proteins to cells to tissues, and over several temporal ranges, from milliseconds to weeks. Modeling tools guide empirical research in this complex and multiscale spatiotemporal environment. Given that the SCN is a prototypical example of oscillating neural systems, principles of its organization hold promise as general prototypes of rhythms in other frequencies.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Hipotálamo/fisiologia , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...