Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2176, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449134

RESUMO

Programmed death-1 (PD-1) and its ligand PD-L1 are checkpoint molecules which regulate immune responses. Little is known about their functions in T cell migration and there are contradictory data about their roles in regulatory T cell (Treg) function. Here we show activated Tregs and CD4 effector T cells (Teffs) use PD-1/PD-L1 and CD80/PD-L1, respectively, to regulate transendothelial migration across lymphatic endothelial cells (LECs). Antibody blockade of Treg PD-1, Teff CD80 (the alternative ligand for PD-L1), or LEC PD-L1 impairs Treg or Teff migration in vitro and in vivo. PD-1/PD-L1 signals through PI3K/Akt and ERK to regulate zipper junctional VE-cadherin, and through NFκB-p65 to up-regulate VCAM-1 expression on LECs. CD80/PD-L1 signaling up-regulates VCAM-1 through ERK and NFκB-p65. PD-1 and CD80 blockade reduces tumor egress of PD-1high fragile Tregs and Teffs into draining lymph nodes, respectively, and promotes tumor regression. These data provide roles for PD-L1 in cell migration and immune regulation.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Células Endoteliais/metabolismo , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
Curr Opin Organ Transplant ; 26(6): 567-581, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714788

RESUMO

PURPOSE OF REVIEW: The microbiota plays an important role in health and disease. During organ transplantation, perturbations in microbiota influence transplant outcome. We review recent advances in characterizing microbiota and studies on regulation of intestinal epithelial barrier function and mucosal and systemic immunity by microbiota and their metabolites. We discuss implications of these interactions on transplant outcomes. RECENT FINDINGS: Metagenomic approaches have helped the research community identify beneficial and harmful organisms. Microbiota regulates intestinal epithelial functions. Signals released by epithelial cells or microbiota trigger pro-inflammatory or anti-inflammatory effects on innate and adaptive immune cells, influencing the structure and function of the immune system. Assessment and manipulation of microbiota can be used for biomarkers for diagnosis, prognosis, and therapy. SUMMARY: The bidirectional dialogue between the microbiota and immune system is a major influence on immunity. It can be targeted for biomarkers or therapy. Recent studies highlight a close association of transplant outcomes with microbiota, suggesting exciting potential avenues for management of host physiology and organ transplantation.


Assuntos
Microbiota , Transplante de Órgãos , Humanos , Intestinos , Transplante de Órgãos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...