Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Traffic ; 14(10): 1078-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23905922

RESUMO

The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Trypanosoma brucei brucei/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Vesículas Transportadoras/metabolismo , Trypanosoma brucei brucei/fisiologia , Ubiquitina/metabolismo
2.
Curr Opin Microbiol ; 15(4): 463-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22445359

RESUMO

Recent advances in secretory biology of African trypanosomes reveal both similarities and striking differences with other model eukaryotic organisms. Secretion is streamlined for rapid and selective transport of the major cargo, VSG. Selectivity in the early and post-Golgi compartments is dependent on glycosylphosphatidyl inositol anchors. Streamlining includes reduced organellar abundance, and close association of ER exit sites with Golgi and with unique flagellar cytoskeletal elements that govern organellar replication and segregation. These elements include a novel centrin containing bilobe structure. Innate signals for post-Golgi sorting of biosynthetic lysosomal cargo trafficking have been defined, as have pathways for both biosynthetic and endocytic trafficking to the lysosome. Less well-defined secretory organelles such as the multivesicular body and acidocalcisomes are receiving closer scrutiny.


Assuntos
Via Secretória/fisiologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
3.
Mol Microbiol ; 82(3): 664-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21923766

RESUMO

We present the first functional analysis of the small GTPase, TbRab7, in Trypanosoma brucei. TbRab7 defines discrete late endosomes closely juxtaposed to the terminal p67(+) lysosome. RNAi indicates that TbRab7 is essential in bloodstream trypanosomes. Initial rates of endocytosis were unaffected, but lysosomal delivery of cargo, including tomato lectin (TL) and trypanolytic factor (TLF) were blocked. These accumulate in a dispersed internal compartment of elevated pH, likely derived from the late endosome. Surface binding of TL but not TLF was reduced, suggesting that cellular distribution of flagellar pocket receptors is differentially regulated by TbRab7. TLF activity was reduced approximately threefold confirming that lysosomal delivery is critical for trypanotoxicity. Unexpectedly, delivery of endogenous proteins, p67 and TbCatL, were unaffected indicating that TbRab7 does not regulate biosynthetic lysosomal trafficking. Thus, unlike mammalian cells and yeast, lysosomal trafficking of endocytosed and endogenous proteins occur via different routes and/or are regulated differentially. TbRab7 silencing had no effect on a cryptic default pathway to the lysosome, suggesting that the default lysosomal reporters p67ΔTM, p67ΔCD and VSGΔGPI do not utilize the endocytic pathway as previously proposed. Surprisingly, conditional knockout indicates that TbRab7 may be non-essential in procyclic insect form trypanosomes.


Assuntos
Endocitose , Endossomos/fisiologia , Lisossomos/fisiologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Lectinas/metabolismo , Lisossomos/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
4.
Eukaryot Cell ; 8(9): 1352-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581441

RESUMO

African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tbmu1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tbmu1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tbmu1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tbmu1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Inativação Gênica , Humanos , Lisossomos/parasitologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia
5.
J Bacteriol ; 190(19): 6428-38, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18658266

RESUMO

The twin-arginine translocation (Tat) pathway is a system used by some bacteria to export proteins out from the cytosol to the cell surface or extracellular environment. A functional Tat pathway exists in the important human pathogen Mycobacterium tuberculosis. Identification of the substrates exported by the Tat pathway can help define the role that this pathway plays in the physiology and pathogenesis of M. tuberculosis. Here we used a reporter of Tat export, a truncated beta-lactamase, 'BlaC, to experimentally identify M. tuberculosis proteins with functional Tat signal sequences. Of the 13 proteins identified, one lacks the hallmark of a Tat-exported substrate, the twin-arginine dipeptide, and another is not predicted by in silico analysis of the annotated M. tuberculosis genome. Full-length versions of a subset of these proteins were tested to determine if the native proteins are Tat exported. For three proteins, expression in a Deltatat mutant of Mycobacterium smegmatis revealed a defect in precursor processing compared to expression in the wild type, indicating Tat export of the full-length proteins. Conversely, two proteins showed no obvious Tat export in M. smegmatis. One of this latter group of proteins was the M. tuberculosis virulence factor phospholipase C (PlcB). Importantly, when tested in M. tuberculosis a different result was obtained and PlcB was exported in a twin-arginine-dependent manner. This suggests the existence of an M. tuberculosis-specific factor(s) for Tat export of a proven virulence protein. It also emphasizes the importance of domains beyond the Tat signal sequence and bacterium-specific factors in determining if a given protein is Tat exported.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/fisiologia , Mycobacterium tuberculosis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Immunoblotting , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Modelos Genéticos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fases de Leitura Aberta/genética , Plasmídeos/genética , Transporte Proteico , Transdução de Sinais , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...