Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18786, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914824

RESUMO

With his bicentennial breeding history based on athletic performance, the Thoroughbred horse can be considered the equine sport breed. Although genomic and transcriptomic tools and knowledge are at the state of the art in equine species, the epigenome and its modifications in response to environmental stimuli, such as training, are less studied. One of the major epigenetic modifications is cytosine methylation at 5' of DNA molecules. This crucial biochemical modification directly mediates biological processes and, to some extent, determines the organisms' phenotypic plasticity. Exercise indeed affects the epigenomic state, both in humans and in horses. In this study, we highlight, with a genome-wide analysis of methylation, how the adaptation to training in the Thoroughbred can modify the methylation pattern throughout the genome. Twenty untrained horses, kept under the same environmental conditions and sprint training regimen, were recruited, collecting peripheral blood at the start of the training and after 30 and 90 days. Extracted leukocyte DNA was analyzed with the methylation content sensitive enzyme ddRAD (MCSeEd) technique for the first time applied to animal cells. Approximately one thousand differently methylated genomic regions (DMRs) and nearby genes were called, revealing that methylation changes can be found in a large part of the genome and, therefore, referable to the physiological adaptation to training. Functional analysis via GO enrichment was also performed. We observed significant differences in methylation patterns throughout the training stages: we hypothesize that the methylation profile of some genes can be affected early by training, while others require a more persistent stimulus.


Assuntos
Epigênese Genética , Esportes , Humanos , Cavalos/genética , Animais , Genoma , Metilação de DNA , DNA/metabolismo
2.
Genes (Basel) ; 14(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628653

RESUMO

Horse domestication and breed selection processes have profoundly influenced the development and transformation of human society and civilization over time. Therefore, their origin and history have always attracted much attention. In Italy, several local breeds have won prestigious awards thanks to their unique traits and socio-cultural peculiarities. Here, for the first time, we report the genetic variation of three loci of the male-specific region of the Y chromosome (MSY) of four local breeds and another one (Lipizzan, UNESCO) well-represented in the Italian Peninsula. The analysis also includes data from three Sardinian breeds and another forty-eight Eurasian and Mediterranean horse breeds retrieved from GenBank for comparison. Three haplotypes (HT1, HT2, and HT3) were found in Italian stallions, with different spatial distributions between breeds. HT1 (the ancestral haplotype) was frequent, especially in Bardigiano and Monterufolino, HT2 (Neapolitan/Oriental wave) was found in almost all local breeds, and HT3 (Thoroughbred wave) was detected in Maremmano and two Sardinian breeds (Sardinian Anglo-Arab and Sarcidano). This differential distribution is due to three paternal introgressions of imported stallions from foreign countries to improve local herds; however, further genetic analyses are essential to reconstruct the genetic history of native horse breeds, evaluate the impact of selection events, and enable conservation strategies.


Assuntos
Árabes , Bases de Dados de Ácidos Nucleicos , Humanos , Animais , Cavalos/genética , Masculino , Haplótipos , Itália , Cromossomo Y/genética
3.
Front Genet ; 14: 1099896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755577

RESUMO

Introduction: The Italian peninsula is in the center of the Mediterranean area, and historically it has been a hub for numerous human populations, cultures, and also animal species that enriched the hosted biodiversity. Horses are no exception to this phenomenon, with the peculiarity that the gene pool has been impacted by warfare and subsequent "colonization". In this study, using a comprehensive dataset for almost the entire Italian equine population, in addition to the most influential cosmopolitan breeds, we describe the current status of the modern Italian gene pool. Materials and Methods: The Italian dataset comprised 1,308 individuals and 22 breeds genotyped at a 70 k density that was merged with publicly available data to facilitate comparison with the global equine diversity. After quality control and supervised subsampling to ensure consistency among breeds, the merged dataset with the global equine diversity contained data for 1,333 individuals from 54 populations. Multidimensional scaling, admixture, gene flow, and effective population size were analyzed. Results and Discussion: The results show that some of the native Italian breeds preserve distinct gene pools, potentially because of adaptation to the different geographical contexts of the peninsula. Nevertheless, the comparison with international breeds highlights the presence of strong gene flow from renowned breeds into several Italian breeds, probably due to historical introgression. Coldblood breeds with stronger genetic identity were indeed well differentiated from warmblood breeds, which are highly admixed. Other breeds showed further peculiarities due to their breeding history. Finally, we observed some breeds that exist more on cultural, traditional, and geographical point of view than due to actual genetic distinctiveness.

4.
Genes (Basel) ; 13(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36553539

RESUMO

The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.


Assuntos
Seleção Artificial , Cromossomo Y , Cavalos/genética , Animais , Masculino , Cromossomo Y/genética , Filogenia , Linhagem , Polimorfismo de Nucleotídeo Único , Mamíferos/genética
5.
Animals (Basel) ; 10(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882901

RESUMO

Sardinia, an island located to the west of Italy in the Mediterranean Sea, boasts three native horse breeds: Giara, Sarcidano, and Sardinian Anglo-Arab. Here, we have investigated for the first time three loci of the non-recombining region of the Y chromosome (NRY) in 34 stallions from these breeds and performed a phylogenetic analysis of the maternal relationships among 178 previously published mitochondrial control regions. We found that the current NRY diversity of Sardinian horse breeds is linked to three haplotypes (HT), all identified within Sarcidano. Each breed showed a typical HT: HT1 (ancestral) was the most represented in Sarcidano, HT2 (Neapolitan/Oriental wave) in Giara, and HT3 (Thoroughbred wave) in Sardinian Anglo-Arab. The specificity of each haplotype suggests the influence of independent breeding strategies and the effect of genetic drift in each Sardinian population. The female counterpart, extended to 178 horses, showed a low genetic variability and a common maternal origin for Giara and Sarcidano. The higher variability of the Sardinian Anglo-Arab indicates multiple mare lineages in its current population. Further genetic analyses will be crucial to understand the paternal history of male horses, preserve the endangered mares' and stallions' lineages, and improve the enhancement of autochthonous genetic resources on this island.

6.
Animals (Basel) ; 10(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640698

RESUMO

This first survey on Sardinian Anglo-Arab horse (SAA) race traits highlights important aspects for the breeding purpose of this population. The heritability of the race traits were estimated through a trivariate model; the estimates were 0.39, 0.33, and 0.30 for the number of placings, total earnings and Elo rating, respectively. The genetic progress could be improved by using an MT genetic evaluation of stallions and mares, combining information from competition traits.

7.
Animals (Basel) ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545354

RESUMO

The Sardinian Anglo Arab (SAA) is a famous horse breed in Italy, with a significant historical background in the island of Sardinia. The aim of the study is to perform an evaluation of genetic variability in SAA using pedigree and mitochondrial data. In the current population, pedigree completeness was observed to be close to 100%, while the inbreeding coefficient and the average relatedness were lower than 3%. The ratio of effective founders/numbers of ancestors was 3.68 for the whole pedigree. The effective population size (Ne) computed by an individual increase in inbreeding (Ne_1) was 456.86, the Ne on equivalent generations (Ne_2) was 184.75, and this value slightly increased to 209.31 when computed by log-regression on equivalent generations (Ne_3). These results suggest the presence of crossbreeding and bottleneck phenomena, and they were compared with other Italian horses (reported in bibliography) to present the SAA among the Italian horse breeds scenario. Furthermore, the noteworthy mitochondrial variability reflects the use of a considerable number of founder mares; the contribution of L lineage was very important, probably because of the re-colonization from the Iberian Peninsula after the Last Glacial Maximum.

8.
Animals (Basel) ; 10(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370302

RESUMO

The purpose of this study was to estimate the heritability and genetic correlations of four biometric measurements and an overall score (OS) in the Sardinian Anglo-Arab horse (SAA); moreover, the effect of inbreeding on these traits was investigated. A dataset with 43,624 horses (27,052 females and 16,572 males) was provided by the Agricultural Research Agency of Sardinia (AGRIS). Cannon bone circumference (BC), chest girth (CG), shoulder length (SL), and withers height (WH) were measured on 6033 SAA horses born in Sardinia between 1967 and 2005; beside the measurements, an overall score (OS) was taken comparing the morphology of each horse to an "ideal type" that is scored out of 100. The mean value is 20.5 cm for BC, 185.9 cm for CG, 67.6 cm for SL, 160.8 cm for WH, and 73.2 for the OS. The heritability estimates ranged from 0.78 to 0.23. The results allow to foresee high genetic progress through the breeding programs. The most affected trait by the inbreeding rate seems to only be the withers height.

10.
Genes (Basel) ; 11(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283859

RESUMO

Physical exercise is universally recognized as stressful. Among the "sport species", the horse is probably the most appropriate model for investigating the genomic response to stress due to the homogeneity of its genetic background. The aim of this work is to dissect the whole transcription modulation in Peripheral Blood Mononuclear Cells (PBMCs) after exercise with a time course framework focusing on unexplored regions related to introns and intergenic portions. PBMCs NGS from five 3 year old Sardinian Anglo-Arab racehorses collected at rest and after a 2000 m race was performed. Apart from differential gene expression ascertainment between the two time points the complexity of transcription for alternative transcripts was identified. Interestingly, we noted a transcription shift from the coding to the non-coding regions. We further investigated the possible causes of this phenomenon focusing on genomic repeats, using a differential expression approach and finding a strong general up-regulation of repetitive elements such as LINE. Since their modulation is also associated with the "exonization", the recruitment of repeats that act with regulatory functions, suggesting that there might be an active regulation of this transcriptional shift. Thanks to an innovative bioinformatic approach, our study could represent a model for the transcriptomic investigation of stress.


Assuntos
Regulação da Expressão Gênica , Genoma , Íntrons/genética , Condicionamento Físico Animal , RNA Mensageiro/genética , Estresse Fisiológico , Transcriptoma , Animais , Feminino , Cavalos , Leucócitos Mononucleares/metabolismo , Masculino
11.
Animals (Basel) ; 10(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085444

RESUMO

Training has a huge effect on physiological homeostasis. The Thoroughbred racehorse is a valid animal model to investigate such changes for training schedule fine-tuning. As happens in human athletes, it is hypothesized that biochemical and immune response changes and related biomolecular variations could be induced by training programs. The aim of this study was to investigate, for the first time, the long-term metabolic and biomolecular modifications in young untrained Thoroughbred racehorses in the first 4-month timeframe training period. Twenty-nine clinically healthy, untrained, two-year-old Thoroughbred racehorses were followed during their incremental 4-month sprint exercise schedule. Blood collection was performed once a month, five times (T-30, T0, T30, T60, and T90). For each sample, lactate concentration, plasma cell volume (PCV), and hematobiochemical parameters (glucose, urea, creatinine, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), total bilirubin (Tbil), lactate dehydrogenase (LDH), creatine kinase (CK), cholesterol, triglycerides, albumin (Alb), total proteins (TPs), phosphorus (P), calcium (Ca2+), magnesium (Mg), sodium (Na+), potassium (K-), and chloride (Cl)) were determined. At T-30 and T90, serum protein electrophoresis (SPE), serum amyloid A (SAA), and real-time qPCR were performed on all samples to evaluate the expression of key genes and cytokines related to inflammatory and Th2 immunity responses: Interleukin-4 (IL-4), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Interleukin-1ß (IL-1ß), Octamer-Binding Transcription Factor 1 (OCT1), B-cell lymphoma/leukemia 11A (BCL11A). Statistical analysis was performed (ANOVA and t test, p < 0.05). Significant modifications were identified compared with T-30 for PCV, glucose, triglycerides, cholesterol, lactate, urea, creatinine, Tbil, ALP, LDH, Na+, K-, Ca2+, SAA, TPs, SPE, IL-6, IL-4, Oct-1, and BCL11A. In conclusion, the first long-term training period was found to induce fundamental systemic changes in untrained Thoroughbreds.

12.
Stem Cells Int ; 2019: 4957806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011332

RESUMO

BACKGROUND: Equine adipose-derived mesenchymal stromal cells (e-AdMSC) exhibit attractive proregenerative properties strongly related to the delivery of extracellular vesicles (EVs) that enclose different kinds of molecules including RNAs. In this study, we investigated small RNA content of EVs produced by e-AdMSC with the aim of speculating on their possible biological role. METHODS: EVs were obtained by ultracentrifugation of the conditioned medium of e-AdMSC of 4 subjects. Transmission electron microscopy and scanning electron microscopy were performed to assess their size and nanostructure. RNA was isolated, enriched for small RNAs (<200 nt), and sequenced by Illumina technology. After bioinformatic analysis with state-of-the-art pipelines for short sequences, mapped reads were used to describe EV RNA cargo, reporting classes, and abundances. Enrichment analyses were performed to infer involved pathways and functional categories. RESULTS: Electron microscopy showed the presence of vesicles ranging in size from 30 to 300 nm and expressing typical markers. RNA analysis revealed that ribosomal RNA was the most abundant fraction, followed by small nucleolar RNAs (snoRNAs, 13.67%). Miscellaneous RNA (misc_RNA) reached 4.57% of the total where Y RNA, RNaseP, and vault RNA represented the main categories. miRNAs were sequenced at a lower level (3.51%) as well as protein-coding genes (1.33%). Pathway analyses on the protein-coding fraction revealed a significant enrichment for the "ribosome" pathway followed by "oxidative phosphorylation." Gene Ontology analysis showed enrichment for terms like "extracellular exosome," "organelle envelope," "RNA binding," and "small molecule metabolic process." The miRNA target pathway analysis revealed the presence of "signaling pathways regulating pluripotency of stem cells" coherent with the source of the samples. CONCLUSION: We herein demonstrated that e-AdMSC release EVs enclosing different subsets of small RNAs that potentially regulate a number of biological processes. These findings shed light on the role of EVs in the context of MSC biology.

13.
Front Physiol ; 9: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740341

RESUMO

Endurance exercise induces metabolic adaptations and has recently been reported associated with the modulation of a particular class of small noncoding RNAs, microRNAs, that act as post-transcriptional regulators of gene expression. Released into body fluids, they termed circulating miRNAs, and they have been recognized as more effective and accurate biomarkers than classical serum markers. This study examined serum profile of miRNAs through massive parallel sequencing in response to prolonged endurance exercise in samples obtained from four competitive Arabian horses before and 2 h after the end of competition. MicroRNA identification, differential gene expression (DGE) analysis and a protein-protein interaction (PPI) network showing significantly enriched pathways of target gene clusters, were assessed and explored. Our results show modulation of more than 100 miRNAs probably arising from tissues involved in exercise responses and indicating the modulation of correlated processes as muscle remodeling, immune and inflammatory responses. Circulating miRNA high-throughput sequencing is a promising approach for sports medicine for the discovery of putative biomarkers for predicting risks related to prolonged activity and monitoring metabolic adaptations.

15.
PLoS One ; 11(4): e0153004, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054850

RESUMO

BACKGROUND: The climatic and cultural diversity of the Italian Peninsula triggered, over time, the development of a great variety of horse breeds, whose origin and history are still unclear. To clarify this issue, analyses on phenotypic traits and genealogical data were recently coupled with molecular screening. METHODOLOGY: To provide a comprehensive overview of the horse genetic variability in Italy, we produced and phylogenetically analyzed 407 mitochondrial DNA (mtDNA) control-region sequences from ten of the most important Italian riding horse and pony breeds: Bardigiano, Esperia, Giara, Lipizzan, Maremmano, Monterufolino, Murgese, Sarcidano, Sardinian Anglo-Arab, and Tolfetano. A collection of 36 Arabian horses was also evaluated to assess the genetic consequences of their common use for the improvement of some local breeds. CONCLUSIONS: In Italian horses, all previously described domestic mtDNA haplogroups were detected as well as a high haplotype diversity. These findings indicate that the ancestral local mares harbored an extensive genetic diversity. Moreover, the limited haplotype sharing (11%) with the Arabian horse reveals that its impact on the autochthonous mitochondrial gene pools during the final establishment of pure breeds was marginal, if any. The only significant signs of genetic structure and differentiation were detected in the geographically most isolated contexts (i.e. Monterufolino and Sardinian breeds). Such a geographic effect was also confirmed in a wider breed setting, where the Italian pool stands in an intermediate position together with most of the other Mediterranean stocks. However, some notable exceptions and peculiar genetic proximities lend genetic support to historical theories about the origin of specific Italian breeds.


Assuntos
Cruzamento , DNA Mitocondrial/genética , Genes Mitocondriais , Cavalos/genética , Animais , Clima , Feminino , Itália , Masculino
16.
BMC Vet Res ; 11: 55, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25889423

RESUMO

BACKGROUND: Epitheliogenesis imperfecta in horses was first recognized at the beginning of the 20th century when it was proposed that the disease could have a genetic cause and an autosomal recessive inheritance pattern. Electron microscopy studies confirmed that the lesions were characterized by a defect in the lamina propria and the disease was therefore reclassified as epidermolysis bullosa. Molecular studies targeted two mutations affecting genes involved in dermal-epidermal junction: an insertion in LAMC2 in Belgians and other draft breeds and one large deletion in LAMA3 in American Saddlebred. CASE PRESENTATION: A mechanobullous disease was suspected in a newborn, Italian draft horse foal, which presented with multifocal to coalescing erosions and ulceration on the distal extremities. Histological examination of skin biopsies revealed a subepidermal cleft formation and transmission electron microscopy demonstrated that the lamina densa of the basement membrane remained attached to the dermis. According to clinical, histological and ultrastructural findings, a diagnosis of junctional epidermolysis bullosa (JEB) was made. Genetic tests confirmed the presence of 1368insC in LAMC2 in the foal and its relatives. CONCLUSION: This is the first report of JEB in Italy. The disease was characterized by typical macroscopic, histologic and ultrastructural findings. Genetic tests confirmed the presence of the 1368insC in LAMC2 in this case: further investigations are required to assess if the mutation could be present at a low frequency in the Italian draft horse population. Atypical breeding practices are responsible in this case and played a role as odds enhancer for unfavourable alleles. Identification of carriers is fundamental in order to prevent economic loss for the horse industry.


Assuntos
Epidermólise Bolhosa Juncional/veterinária , Doenças dos Cavalos/genética , Animais , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/patologia , Doenças dos Cavalos/patologia , Cavalos/genética , Mutação INDEL/genética , Laminina/genética , Masculino , Microscopia Eletrônica de Transmissão , Linhagem , Deleção de Sequência/genética , Pele/patologia , Pele/ultraestrutura
17.
BMC Genomics ; 14: 487, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23865711

RESUMO

BACKGROUND: Copy number variants (CNVs) have been shown to play an important role in genetic diversity of mammals and in the development of many complex phenotypic traits. The aim of this study was to perform a standard comparative evaluation of CNVs in horses using three different CNV detection programs and to identify genomic regions associated with body size in horses. RESULTS: Analysis was performed using the Illumina Equine SNP50 genotyping beadchip for 854 horses. CNVs were detected by three different algorithms, CNVPartition, PennCNV and QuantiSNP. Comparative analysis revealed 50 CNVs that affected 153 different genes mainly involved in sensory perception, signal transduction and cellular components. Genome-wide association analysis for body size showed highly significant deleted regions on ECA1, ECA8 and ECA9. Homologous regions to the detected CNVs on ECA1 and ECA9 have also been shown to be correlated with human height. CONCLUSIONS: Comparative analysis of CNV detection algorithms was useful to increase the specificity of CNV detection but had certain limitations dependent on the detection tool. GWAS revealed genome-wide associated CNVs for body size in horses.


Assuntos
Algoritmos , Tamanho Corporal/genética , Variações do Número de Cópias de DNA/genética , Genômica/métodos , Cavalos/crescimento & desenvolvimento , Cavalos/genética , Animais , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Especificidade da Espécie
18.
PLoS One ; 8(1): e54997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383025

RESUMO

Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.


Assuntos
Genômica , Cavalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Análise por Conglomerados , Cavalos/classificação , Análise de Componente Principal
19.
PLoS One ; 8(12): e83504, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391776

RESUMO

The horse is an optimal model organism for studying the genomic response to exercise-induced stress, due to its natural aptitude for athletic performance and the relative homogeneity of its genetic and environmental backgrounds. Here, we applied RNA-sequencing analysis through the use of SOLiD technology in an experimental framework centered on exercise-induced stress during endurance races in equine athletes. We monitored the transcriptional landscape by comparing gene expression levels between animals at rest and after competition. Overall, we observed a shift from coding to non-coding regions, suggesting that the stress response involves the differential expression of not annotated regions. Notably, we observed significant post-race increases of reads that correspond to repeats, especially the intergenic and intronic L1 and L2 transposable elements. We also observed increased expression of the antisense strands compared to the sense strands in intronic and regulatory regions (1 kb up- and downstream) of the genes, suggesting that antisense transcription could be one of the main mechanisms for transposon regulation in the horse under stress conditions. We identified a large number of transcripts corresponding to intergenic and intronic regions putatively associated with new transcriptional elements. Gene expression and pathway analysis allowed us to identify several biological processes and molecular functions that may be involved with exercise-induced stress. Ontology clustering reflected mechanisms that are already known to be stress activated (e.g., chemokine-type cytokines, Toll-like receptors, and kinases), as well as "nucleic acid binding" and "signal transduction activity" functions. There was also a general and transient decrease in the global rates of protein synthesis, which would be expected after strenuous global stress. In sum, our network analysis points toward the involvement of specific gene clusters in equine exercise-induced stress, including those involved in inflammation, cell signaling, and immune interactions.


Assuntos
Cavalos/genética , Cavalos/fisiologia , Animais , Expressão Gênica , Redes Reguladoras de Genes , Família Multigênica , Condicionamento Físico Animal , Esforço Físico/genética , Sítios de Splice de RNA , Análise de Sequência de RNA , Estresse Fisiológico/genética , Transcriptoma
20.
Proc Natl Acad Sci U S A ; 109(7): 2449-54, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308342

RESUMO

Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A-R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ~130-160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii--the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.


Assuntos
Animais Domésticos/genética , DNA Mitocondrial/genética , Genoma , Haplótipos , Cavalos/genética , Animais , Cavalos/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...