Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371276

RESUMO

Respiratory viral infections represent the leading cause of hospitalization in infants and young children worldwide and the second leading cause of infant mortality. Among these, Respiratory Syncytial Virus (RSV) represents the main cause of lower respiratory tract infections (LRTIs) in young children worldwide. RSV manifestation can range widely from mild upper respiratory infections to severe respiratory infections, mainly bronchiolitis and pneumonia, leading to hospitalization, serious complications (such as respiratory failure), and relevant sequalae in childhood and adulthood (wheezing, asthma, and hyperreactive airways). There are no specific clinical signs or symptoms that can distinguish RSV infection from other respiratory pathogens. New multiplex platforms offer the possibility to simultaneously identify different pathogens, including RSV, with an accuracy similar to that of single polymerase chain reaction (PCR) in the majority of cases. At present, the treatment of RSV infection relies on supportive therapy, mainly consisting of oxygen and hydration. Palivizumab is the only prophylactic method available for RSV infection. Advances in technology and scientific knowledge have led to the creation of different kinds of vaccines and drugs to treat RSV infection. Despite the good level of these studies, there are currently few registered strategies to prevent or treat RSV due to difficulties related to the unpredictable nature of the disease and to the specific target population.

2.
Hum Vaccin Immunother ; 16(1): 86-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31210557

RESUMO

This study was planned to evaluate whether a 3-month treatment with Lactobacillus rhamnosus GG (LGG) can modify immune system functions in children and adolescents with type 1 diabetes (T1D), leading to an increased immune response to an injectable quadrivalent inactivated influenza vaccine (QIV). A total of 87 pediatric patients with T1D were screened, although 34 patients in the Probiotic group and 30 in the Control group accepted to be vaccinated with QIV and completed the study. Vaccine immunogenicity and safety and the inflammatory cytokine response were studied. Results showed that QIV was immunogenic and safe in T1D pediatric patients and pre-administration of LGG for three months did not substantially modify the QIV humoral immunity. The combination of QIV and LGG reduced inflammatory responses (i.e., IFN-γ, IL17A, IL-17F, IL-6, and TNF-α) from activated PBMCs of pediatric patients with T1D, without dampening the production of seroprotective antibodies. In conclusion, QIV is associated with an adequate immunogenicity in children and adolescents with T1D in presence of a good safety profile. Although a systematic administration of LGG did not result in an improvement of humoral responses to an influenza vaccine, the probiotic did induce important anti-inflammatory effects.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Lacticaseibacillus rhamnosus/imunologia , Probióticos/administração & dosagem , Adolescente , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Citocinas/imunologia , Feminino , Humanos , Imunidade Humoral , Lactente , Inflamação/prevenção & controle , Vacinas contra Influenza/administração & dosagem , Masculino , Estudos Prospectivos , Método Simples-Cego , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
3.
Vaccines (Basel) ; 7(4)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683882

RESUMO

Acute respiratory infections (ARIs) are extremely common in children, especially those under 5 years old. They can lead to complications, super-infection, respiratory failure, and even compromised respiratory function in adulthood. For some of the responsible pathogens, vaccines are available. This review reports current issues about vaccines against the main respiratory pathogens to highlight the available strategies to reduce the burden of paediatric respiratory disease. The optimal use of influenza, pneumococcal, pertussis and measles vaccines is required in order to reduce ARI burden. Vaccination coverage rates must be improved to achieve the full benefits of these vaccines. Recently, advances in the knowledge of respiratory syncytial virus structural biology and immunology as well as the development of new techniques to generate vaccine candidates have increased the number of promising vaccines even against this harmful pathogen.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31275863

RESUMO

Respiratory tract infections (RTIs) are extremely common especially in the first year of life. Knowledge of the etiology of a RTI is essential to facilitate the appropriate management and the implementation of the most effective control measures. This perspective explains why laboratory methods that can identify pathogens in respiratory secretions have been developed over the course of many years. High-complexity multiplex panel assays that can simultaneously detect up to 20 viruses and up to four bacteria within a few hours have been marketed. However, are these platforms actually useful in pediatric clinical practice? In this manuscript, we showed that these platforms appear to be particularly important for epidemiological studies and clinical research. On the contrary, their routine use in pediatric clinical practice remains debatable. They can be used only in the hospital as they require specific equipment and laboratory technicians with considerable knowledge, training, and experience. Moreover, despite more sensitive and specific than other tests routinely used for respiratory pathogen identification, they do not offer significantly advantage for detection of the true etiology of a respiratory disease. Furthermore, knowledge of which virus is the cause of a respiratory disease is not useful from a therapeutic point of view unless influenza virus or respiratory syncytial virus are the infecting agents as effective drugs are available only for these pathogens. On the other hand, multiplex platforms can be justified in the presence of severe clinical manifestations, and in immunocompromised patients for whom specific treatment option can be available, particularly when they can be used simultaneously with platforms that allow identification of antimicrobial resistance to commonly used drugs. It is highly likely that these platforms, particularly those with high sensitivity and specificity and with low turnaround time, will become essential when new drugs effective and safe against most of the respiratory viruses will be available. Further studies on how to differentiate carriers from patients with true disease, as well as studies on the implications of coinfections and identification of antimicrobial resistance, are warranted.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Infecções Respiratórias/diagnóstico , Vírus/isolamento & purificação , Bactérias/genética , Criança , Coinfecção , Resistência a Medicamentos , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Vírus/genética
5.
Front Pharmacol ; 10: 513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139086

RESUMO

Bacteriophages (BPs) are viruses that can infect and kill bacteria without any negative effect on human or animal cells. For this reason, it is supposed that they can be used, alone or in combination with antibiotics, to treat bacterial infections. In this narrative review, the advantages and limitations of BPs for use in humans will be discussed. PubMed was used to search for all of the studies published from January 2008 to December 2018 using the key words: "BPs" or "phages" and "bacterial infection" or "antibiotic" or "infectious diseases." More than 100 articles were found, but only those published in English or providing evidence-based data were included in the evaluation. Literature review showed that the rapid rise of multi-drug-resistant bacteria worldwide coupled with a decline in the development and production of novel antibacterial agents have led scientists to consider BPs for treatment of bacterial infection. Use of BPs to overcome the problem of increasing bacterial resistance to antibiotics is attractive, and some research data seem to indicate that it might be a rational measure. However, present knowledge seems insufficient to allow the use of BPs for this purpose. To date, the problem of how to prepare the formulations for clinical use and how to avoid or limit the risk of emergence of bacterial resistance through the transmission of genetic material are not completely solved problems. Further studies specifically devoted to solve these problems are needed before BPs can be used in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...