Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Toxicol Rep ; 12: 234-243, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356855

RESUMO

Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells. Briefly, assays performed included metabolic activity, cholesterol content, mitochondrial respiration, and prominent markers of oxidative stress, as well as determining changes in mitochondrial potential, mitochondrial production of reactive oxygen species, and intracellular antioxidant levels like glutathione, glutathione peroxidase and superoxide dismutase. Cellular damage was probed using fluorescent stains, annexin V and propidium iodide. Our results indicated that prolonged exposure (24-hours) to palmitic acid doses ≥ 0.5 mM significantly impaired mitochondrial oxidative status, leading to enhanced mitochondrial membrane potential and increased mitochondrial ROS production. While palmitic acid dose of 1 mM appeared to induce prominent cardiomyoblasts damage, likely because of its capacity to increase cholesterol content/ lipid peroxidation and severely suppressing intracellular antioxidants. Interestingly, short-term (4-hours) exposure to palmitic acid, especially for lower doses (≤ 0.25 mM), could improve metabolic activity, mitochondrial function and protect against oxidative stress induced myocardial damage. Potentially suggesting that, depending on the dose consumed or duration of exposure, consumption of saturated fatty acids such as palmitic acid can differently affect the myocardium. However, these results are still preliminary, and in vivo research is required to understand the significance of maintaining intracellular antioxidants to protect against oxidative stress induced by lipid overload.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275651

RESUMO

Oxidative stress (OS) is implicated in several chronic diseases. Extra-cellular superoxide dismutase (ec-SOD) catalyses the dismutation of superoxide anions with a protective role in endothelial cells. In chronic kidney disease (CKD), OS and thyroid dysfunction (low fT3 syndrome) are frequently present, but their relationship has not yet been investigated. This cohort study evaluated ec-SOD activity in CKD patients during haemodialysis, divided into "acute haemodialytic patients" (AH, 1-3 months of treatment) and "chronic haemodialytic patients" (CH, treated for a longer period). We also evaluated plasmatic total antioxidant capacity (TAC) and its relationships with thyroid hormones. Two basal samples ("basal 1", obtained 3 days after the last dialysis; and "basal 2", obtained 2 days after the last dialysis) were collected. On the same day of basal 2, a sample was collected 5 and 10 min after the standard heparin dose and at the end of the procedure. The ec-SOD values were significantly higher in CH vs. AH in all determinations. Moreover, the same patients had lower TAC values. When the CH patients were divided into two subgroups according to fT3 levels (normal or low), we found significantly lower ec-SOD values in the group with low fT3 in the basal, 5, and 10 min samples. A significant correlation was also observed between fT3 and ec-SOD in the basal 1 samples. These data, confirming OS and low fT3 syndrome in patients with CKD, suggest that low fT3 concentrations can influence ec-SOD activity and could therefore potentially contribute to endothelial oxidative damage in these patients.

3.
Pharmacol Res ; 196: 106918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703962

RESUMO

There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.

4.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764216

RESUMO

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Assuntos
Doenças Cardiovasculares , Café , Humanos , Doenças Cardiovasculares/prevenção & controle , Estresse Oxidativo , Antioxidantes , Biomarcadores , Inflamação
5.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764345

RESUMO

The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.

6.
Life Sci ; 332: 122125, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769808

RESUMO

Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.

7.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107339

RESUMO

Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.

8.
Biochimie ; 204: 33-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36067903

RESUMO

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Mevalônico , Colesterol , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Dislipidemias/complicações , Dislipidemias/tratamento farmacológico
9.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139772

RESUMO

Myalgia and new-onset of type 2 diabetes have been associated with statin treatment, which both could be linked to reduced coenzyme Q10 (CoQ10) in skeletal muscle and impaired mitochondrial function. Supplementation with CoQ10 focusing on levels of CoQ10 in skeletal muscle and mitochondrial function has not been investigated in patients treated with statins. To investigate whether concomitant administration of CoQ10 with statins increases the muscle CoQ10 levels and improves the mitochondrial function, and if changes in muscle CoQ10 levels correlate with changes in the intensity of myalgia. 37 men and women in simvastatin therapy with and without myalgia were randomized to receive 400 mg CoQ10 daily or matched placebo tablets for eight weeks. Muscle CoQ10 levels, mitochondrial respiratory capacity, mitochondrial content (using citrate synthase activity as a biomarker), and production of reactive oxygen species were measured before and after CoQ10 supplementation, and intensity of myalgia was determined using the 10 cm visual analogue scale. Muscle CoQ10 content and mitochondrial function were unaltered by CoQ10 supplementation. Individual changes in muscle CoQ10 levels were not correlated with changes in intensity of myalgia. CoQ10 supplementation had no effect on muscle CoQ10 levels or mitochondrial function and did not affect symptoms of myalgia.

10.
J Pers Med ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35743642

RESUMO

Oxidative and inflammatory damage underlie several conditions related to male infertility, including varicocele. Free light chains of immunoglobulins (FLCs) are considered markers of low-grade inflammation in numerous diseases. Coenzyme Q10 (CoQ10), a lipidic antioxidant and anti-inflammatory compound, is involved in spermatozoa energy metabolism and motility. We aimed to evaluate FLCs' seminal levels in patients with varicocele in comparison to control subjects and to correlate them with CoQ10 and Total Antioxidant Capacity (TAC) in human semen. Sixty-five patients were enrolled. Semen analysis was performed; patients were divided into three groups: controls, 12 normozoospermic patients, aged 34 (33-41) years; varicocele (VAR), 29 patients, aged 33 (26-37) years; and idiopathic, 24 oligo-, astheno- and oligoasthenozoospermic patients aged 37 (33.5-40.5) years. FLCs (κ and λ) were assayed by turbidimetric method; CoQ10 by HPLC; TAC by spectrophotometric method. λ FLCs showed a trend toward higher levels in VAR vs. controls and the idiopathic group. VAR showed a trend toward lower κ FLCs levels vs. the other two groups. When comparing κ/λ ratio, VAR showed significantly lower levels vs. controls and idiopathic. Moreover, CoQ10 seminal levels showed higher levels in VAR and idiopathic compared to controls. Data reported here confirm lower levels of κ/λ ratio in VAR and suggest a possible application in personalized medicine as clinical biomarkers for male infertility.

11.
Biofactors ; 48(5): 1129-1136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35583412

RESUMO

Carboxylative enzymes are involved in many pathways and their regulation plays a crucial role in many of these pathways. In particular, γ-glutamylcarboxylase (GGCX) converts glutamate residues (Glu) into γ-carboxyglutamate (Gla) of the vitamin K-dependent proteins (VKDPs) activating them. VKDPs include at least 17 proteins involved in processes such as blood coagulation, blood vessels calcification, and bone mineralization. VKDPs are activated by the reduced form of vitamin K, naturally occurring as vitamin K1 (phylloquinone) and K2 (menaquinones, MKs). Among these, MK7 is the most efficient in terms of bioavailability and biological effect. Similarly to other trans isomers, it is produced by natural fermentation or chemically in both trans and cis. However, the efficacy of the biological effect of the different isomers and the impact on humans are unknown. Our study assessed carboxylative efficacy of trans and cis MK7 and compared it with other vitamin K isomers, evaluating both the expression of residues of carboxylated Gla-protein by western blot analysis and using a cell-free system to determine the GGCX activity by HPLC. Trans MK7H2 showed a higher ability to carboxylate the 70 KDa GLA-protein, previously inhibited in vitro by warfarin treatment. However, cis MK7 also induced a carboxylation activity albeit of a small extent. The data were confirmed chromatographically, in which a slight carboxylative activity of cis MK7H2 was demonstrated, comparable with both K1H2 and oxidized trans MK7 but less than trans MK7H2 . For the first time, a difference of biological activity between cis and trans configuration of menaquinone-7 has been reported.


Assuntos
Vitamina K 1 , Vitamina K , Ácido 1-Carboxiglutâmico , Humanos , Vitamina K/farmacologia , Vitamina K 1/metabolismo , Vitamina K 1/farmacologia , Vitamina K 2/metabolismo , Vitamina K 2/farmacologia , Varfarina/farmacologia
12.
Life Sci ; 297: 120467, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271881

RESUMO

Skeletal muscle insulin resistance and mitochondrial dysfunction are some of the major pathological defects implicated in the development of type 2 diabetes (T2D). Therefore, it has become necessary to understand how common interventions such as physical exercise and caloric restriction affect metabolic function, including physiological processes that implicate skeletal muscle dysfunction within a state of T2D. This review critically discusses evidence on the impact of physical exercise and caloric restriction on markers of insulin resistance and mitochondrial dysfunction within the skeletal muscle of patients with T2D or related metabolic complications. Importantly, relevant information from clinical studies was acquired through a systematic approach targeting major electronic databases and search engines such as PubMed, Google Scholar, and Cochrane library. The reported evidence suggests that interventions like physical exercise and caloric restriction, within a duration of approximately 2 to 4 months, can improve insulin sensitivity, in part by targeting the phosphoinositide 3-kinases/protein kinase B pathway in patients with T2D. Furthermore, both physical exercise and caloric restriction can effectively modulate markers related to improved mitochondrial function and dynamics. This was consistent with an improved modulation of mitochondrial oxidative capacity and reduced production of reactive oxygen species in patients with T2D or related metabolic complications. However, such conclusions are based on limited evidence, additional clinical trials are required to better understand these interventions on pathological mechanisms of T2D and related abnormalities.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Restrição Calórica , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
13.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35204095

RESUMO

The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (ß-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and ß-carotene) and of phylloquinone was comparable. The lutein and ß-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.

14.
Biochimie ; 196: 182-193, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34563603

RESUMO

It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function. In addition to systematically retrieving the discussed data, the current review brings an essential perspective in understanding the relevance of experimental models of lipid overload such as high fat diets in understanding the pathological link between insulin resistance and pathological changes in mitochondrial oxidative capacity. Importantly, inclusion of evidence from transgenic model highlights some of the unique molecular targets that are implicated in the development of insulin resistance and inefficient mitochondrial respiration processes within an obese state. Importantly, saturation with lipid products such as ceramides and diacylglycerols, especially within the skeletal muscle, appears to be instrumental in paving the path leading to worsening of metabolic complications. These metabolic consequences mostly interfere with the efficiency of the mitochondrial electron transport chain, leading to overproduction of toxic reactive oxygen species. Therefore, therapeutic agents that reverse the effects of lipid overload by improving insulin sensitivity and mitochondrial oxidative capacity are crucial for the management or even treatment of metabolic diseases.


Assuntos
Resistência à Insulina , Ceramidas/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Modelos Teóricos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Estresse Oxidativo
15.
J Physiol ; 600(3): 569-581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34891216

RESUMO

Statins are prescribed for the treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance, and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate these effects. Combined simvastatin and CoQ10 treatment during physical training has never been tested. We studied the response to 8 weeks training (maximal oxygen uptake ( V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ ), fat oxidation (MFO), the workload at which MFO occurred, and muscle strength) in statin naive dyslipidaemic patients who received simvastatin (40 mg/day) with (S + Q, n = 9) or without (S + Pl, n = 10) CoQ10 supplementation (2 × 200 mg/day) or placebo (Pl + Pl, n = 7) in a randomized, double-blind placebo-controlled study. V̇O2max${\dot{V}_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ and maximal workload increased with training (main effect of time, P < 0.05). MFO increased from 0.29 ± 0.10, 0.26 ± 0.10, and 0.38 ± 0.09 to 0.42 ± 0.09, 0.38 ± 0.10 and 0.48 ± 0.16 g/min in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P = 0.0013). The workload at MFO increased from 75 ± 25, 56 ± 23, and 72 ± 17 to 106 ± 25, 84 ± 13 and 102 ± 31 W in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P < 0.0001). Maximal voluntary contraction and rate of force development were unchanged. Exercise improved aerobic physical capacity and simvastatin with or without CoQ10 supplementation did not inhibit this adaptation. The similar increases in MFO and in the workload at which MFO occurred in response to training shows that the ability to adapt substrate selection and oxidation rates is preserved with simvastatin treatment, despite the potential negative impact of simvastatin at the mitochondrial level. CoQ10 supplementation does not augment this adaptation. KEY POINTS: Simvastatins are prescribed for treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate some of these effects. We found that simvastatin treatment does not negatively affect training-induced adaptations of substrate oxidation during exercise. Likewise, maximal oxygen uptake increases with physical training also in patients in treatment with simvastatin. CoQ10 supplementation in simvastatin-treated patients presents no advantage in the adaptations to physical training Simvastatin treatment decreases plasma concentrations of total CoQ10, but this can be alleviated by simultaneous supplementation with CoQ10.


Assuntos
Sinvastatina , Ubiquinona , Suplementos Nutricionais , Exercício Físico/fisiologia , Humanos , Músculos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
16.
Metallomics ; 13(11)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34724067

RESUMO

New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.


Assuntos
Antineoplásicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Estrutura Molecular
17.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439573

RESUMO

The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.

18.
Methods Ecol Evol ; 12(6): 1093-1102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34262682

RESUMO

Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow.In this paper, we present a new R package-rasterdiv-to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns.The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.

19.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068459

RESUMO

Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.


Assuntos
Músculo Esquelético/metabolismo , Polifenóis/farmacologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Músculo Esquelético/efeitos dos fármacos , Polifenóis/química
20.
J Trace Elem Med Biol ; 66: 126746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33756184

RESUMO

BACKGROUND: Cadmium is considered the seventh most toxic heavy metal as per ATSDR ranking but its mechanism of toxicity is debated. Recently, we evaluated the effects of this metal on the erythrocyte of teleost fish (Oncorhynchus mykiss) leading us to hypothesize that the pro-oxidant activity of cadmium is not linked to mitochondria but more likely to haemoglobin. In this context, the main aim of this work was to detect the ability of Cd to induce structural perturbation in haemoproteins that present different structures and thus different functional properties and to identify what sites of interaction are mainly involved. METHODS: The effect of Cd on the structural destabilization of the different haemoproteins was followed spectrophometrically through their precipitation. In addition, the sites of interaction between the different haemoproteins and bivalent cadmium ions were identified by MIB server followed by molecular docking/molecular dynamics simulations both in the dimeric and tetrameric associations. RESULTS: Cadmium does not influence the autoxidation rate of Mb, HbA and trout HbI. However, the presence of this metal accelerates the precipitation process in trout HbIV in a dose-dependent manner. Moreover, the presence of 1-10-50-250-500-1000 µM GSH, a chelating agent, reduces the ability of cadmium to accelerate the denaturation process although it is not able to completely prevent it. In order to explain the experimental results, a computational investigations was carried out to identify the cadmium cation affinity for the studied haemoglobins and myoglobin, both in their dimeric and tetrameric forms. As a result, the highest affinity cadmium binding sites for fish HbIV are located at the interface between tetramer-tetramer association, indicating that the cation can assist supramolecular protein aggregations and induce complex precipitation. For mammalian Hb, Mb and fish HbI computational investigation did not detect any site where Cd could to induce such aggregation, in line with the experimental results. CONCLUSION: The present study provides new information on the mechanisms of toxicity of cadmium by specific interaction with trout O. mykiss haemoglobin component.


Assuntos
Cádmio/química , Proteínas de Peixes/química , Hemoglobinas/química , Compostos de Sulfidrila/química , Animais , Intoxicação por Cádmio , Simulação por Computador , Eritrócitos , Humanos , Mitocôndrias/química , Simulação de Acoplamento Molecular , Oncorhynchus mykiss , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...