Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2304747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847909

RESUMO

All-solid-state lithium batteries (ASSLBs) are considered promising alternatives to current lithium-ion batteries that employ liquid electrolytes due to their high energy density and enhanced safety. Among various types of solid electrolytes, sulfide-based electrolytes are being actively studied, because they exhibit high ionic conductivity and high ductility, which enable good interfacial contacts in solid electrolytes without sintering at high temperatures. To improve the energy density of the sulfide-based ASSLBs, it is essential to increase the loading of active material in the composite cathode. In this study, the Ni-rich LiNix Coy Mn1-x-y O2 (NCM) materials are explored with different Ni content, particle size, and crystalline form to probe suitable cathode active materials for high-performance ASSLBs with high energy density. The results reveal that single-crystalline LiNi0.82 Co0.10 Mn0.08 O2 material with a small particle size exhibits the best cycling performance in the ASSLB assembled with a high mass loaded cathode (active mass loading: 26 mg cm-2 , areal capacity: 5.0 mAh cm-2 ) in terms of discharge capacity, capacity retention, and rate capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...