Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419156

RESUMO

In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500-900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.

2.
Polymers (Basel) ; 12(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906568

RESUMO

In this research, a fly ash/epoxy composite was fabricated using fly ash filler classified as industrial waste. The behavior of its mechanical properties was investigated by changing the volume of fly ash to 10, 30 and 50 vol.%. To determine the influence of particle size on the mechanical properties, we used two different sizes of the fly ash, which were separated by sieving to less than 90 µm and 53 µm. To optimize fabrication conditions, the viscosity of the fly ash/epoxy slurry was measured at various temperatures with different fly ash volume fractions. In terms of mechanical properties, tensile strength increased as the amount of fly ash increased, up to a critical point. On the other hand, the compression strength of the composite increased continuously as the amount of fly ash increased. Finally, the fracture surfaces were characterized and correlated with the mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA