Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(46): e2007668, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34021638

RESUMO

The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.

2.
Nano Lett ; 21(1): 731-739, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33332127

RESUMO

Photothermal therapy (PTT) exploits nanomaterials with optimal heat conversion and cellular penetration using near-infrared (NIR) laser irradiation. However, current PTT agents suffer from inefficient heat conversion, poor intracellular delivery, and a high dose of probes along with excessive laser irradiation, causing limited therapeutic outcomes. Here, bumpy Au triangular nanoprisms (BATrisms) are developed for increasing the surface area, improving cell penetration, shifting the absorption peak to the NIR region, and enhancing the photothermal conversion efficiency (∼86%). Further, leucine (L)- and lysine (K)-rich cell-penetrating peptides (LK peptides) were employed to largely improve their cellular uptake efficiency. Importantly, a significant in vivo therapeutic efficacy with LK-BATrisms was demonstrated in a triple-negative breast cancer xenograft mice model. A very small dose of LK-BATrism (2.5 µg Au) was enough to exert antitumor efficacy under very low laser power (808 nm, 0.25 W/cm2), causing minimal tissue damages while very efficiently killing cancer cells.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanoestruturas , Animais , Linhagem Celular Tumoral , Ouro , Lasers , Camundongos , Fototerapia , Terapia Fototérmica
3.
Chem Sci ; 10(27): 6594-6603, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367310

RESUMO

In this work, we showed the tuning of the catalytic behavior of dendritic plasmonic colloidosomes (DPCs) by plasmonic hotspots. A cycle-by-cycle solution-phase synthetic protocol yielded high-surface-area DPCs by controlled nucleation-growth of gold nanoparticles. These DPCs, which had varying interparticle distances and particle-size distribution, absorb light over the entire visible region as well as in the near-infrared region of the solar spectrum, transforming gold into black gold. They produced intense hotspots of localized electric fields as well as heat, which were quantified and visualized by Raman thermometry and electron energy loss spectroscopy plasmon mapping. These DPCs can be effectively utilized for the oxidation reaction of cinnamyl alcohol using pure oxygen as the oxidant, hydrosilylation of aldehydes, temperature jump assisted protein unfolding and purification of seawater to drinkable water via steam generation. Black gold DPCs also convert CO2 to methane (fuel) at atmospheric pressure and temperature, using solar energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...