Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932915

RESUMO

Ginsenosides have been reported to have various biological effects, such as immune regulation and anticancer activity. In this study, we investigated the anti-inflammatory role of a combination of Rg2 and Rh1, which are minor ginsenosides, in lipopolysaccharide (LPS)-stimulated inflammation. In vitro experiments were performed using the RAW264.7 cell line, and an in vivo model of inflammation was established using LPS-treated ICR mice. We employed Griess assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunofluorescence staining, and hematoxylin and eosin staining to evaluate the effect of Rg2 and Rh1. We found that Rg2 and Rh1 significantly decreased LPS-induced major inflammatory mediator production, inducible-nitric oxide synthase expression, and nitric oxide production in macrophages. Moreover, Rg2 and Rh1 combination treatment inhibited the binding of LPS to toll-like receptor 4 (TLR4) on peritoneal macrophages. Therefore, the combination of ginsenoside Rg2 and Rh1 suppressed inflammation by abolishing the binding of LPS to TLR4, thereby inhibiting the TLR4-mediated signaling pathway. The combined ginsenoside synergistically blocked LPS-mediated PKCδ translocation to the plasma membrane, resulting in p38-STAT1 activation and NF-κB translocation. In addition, mRNA levels of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IFN-ß, were significantly decreased by combined ginsenoside treatment. Notably, the 20 mg/kg ginsenoside treatment significantly reduced LPS-induced acute tissue inflammation levels in vivo, as indicated by the tissue histological damage scores and the levels of biochemical markers for liver and kidney function from mouse serum. These results suggest that the minor ginsenosides Rg2 and Rh1 may play a key role in prevention of LPS-induced acute inflammation and tissue damage.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Fator de Transcrição STAT1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Células RAW 264.7
2.
Mater Sci Eng C Mater Biol Appl ; 114: 111042, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32993980

RESUMO

The incidence of rheumatoid arthritis (RA), an autoimmune inflammatory disease, is rapidly increasing in aging societies. In the current study, celecoxib (CXB) micelles were developed to improve the oral absorption and anti-inflammatory effects of CXB in cell studies and λ-carrageenan rat models, and to enhance the therapeutic effects of CXB on RA in complete Freund's adjuvant (CFA)-induced RA rat models. Moreover, CXB micelles and previously developed solid dispersion (SD6) formulations were evaluated. The physical properties of optimal CXB micelles (M3), such as crystallinity, thermal properties, and intramolecular interactions, were altered. Compared with the commercial product (Celebrex®), the M3 and SD6 formulations showed significantly improved anti-inflammatory effects in terms of nitric oxide reduction, 1.5-fold and 2.2-fold, respectively, at the cellular level. The relative bioavailability (BA) of the M3 and SD6 formulations was also significantly improved as oral bioavailability (167.2% and 219.8% respectively), compared with that of Celebrex®. In particular, M3 and SD6 significantly reduced inflammation and edema volume relative to Celebrex® in CFA-induced RA rat models. Moreover, both M3 and SD6 effectively suppressed CFA-induced pro-inflammatory cytokines (TNF-α and IL-1ß) in rat splenic tissues. In conclusion, polymeric systems improved the solubility, relative BA (%) and anti-inflammatory effects of CXB. Thus, CXB polymeric systems show potential as therapeutic agents against inflammation and RA and may need to be tested at the clinical level.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Adjuvante de Freund , Inflamação/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...