Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(2): eadh3929, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38198538

RESUMO

Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched Rreb1 transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia. Analysis of chromatin immunoprecipitation and sequencing, along with RNA sequencing data revealed dysregulation of RREB1 targets associated with the microtubule cytoskeleton. In agreement with the known role of microtubules in dendritic development, dendritic complexity was disrupted in Rreb1-deficient neurons. Analysis of sequencing data also suggested that RREB1 plays a role in the endomembrane system. Mutant Purkinje cells had fewer numbers of autophagosomes and lysosomes and contained P62- and ubiquitin-positive inclusions. Together, these studies demonstrate that RREB1 functions to maintain the microtubule network and proteostasis in mammalian neurons.


Assuntos
Proteostase , Fatores de Transcrição , Animais , Camundongos , Mamíferos , Microtúbulos , Neurônios , Células de Purkinje
2.
Science ; 360(6387): 430-435, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700265

RESUMO

Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Condicionamento Clássico , Medo , Proteínas de Fluorescência Verde/análise , Células HEK293 , Humanos , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Neuroimagem/métodos , Plasticidade Neuronal
3.
Cell Rep ; 22(3): 748-759, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346771

RESUMO

Peripheral nerve injury can induce pathological conditions that lead to persistent sensitized nociception. Although there is evidence that plastic changes in the cortex contribute to this process, the underlying molecular mechanisms are unclear. Here, we find that activation of the anterior cingulate cortex (ACC) induced by peripheral nerve injury increases the turnover of specific synaptic proteins in a persistent manner. We demonstrate that neural cell adhesion molecule 1 (NCAM1) is one of the molecules involved and show that it mediates spine reorganization and contributes to the behavioral sensitization. We show striking parallels in the underlying mechanism with the maintenance of NMDA-receptor- and protein-synthesis-dependent long-term potentiation (LTP) in the ACC. Our results, therefore, demonstrate a synaptic mechanism for cortical reorganization and suggest potential avenues for neuropathic pain treatment.


Assuntos
Antígeno CD56/metabolismo , Giro do Cíngulo/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Giro do Cíngulo/patologia , Masculino , Camundongos , Traumatismos dos Nervos Periféricos/patologia , Sinapses/patologia
4.
Neurobiol Learn Mem ; 138: 31-38, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27344941

RESUMO

ADP-ribosylation factors (ARFs) are small guanosine triphosphatases of the Ras superfamily involved in membrane trafficking and regulation of the actin cytoskeleton. Aplysia Sec7 protein (ApSec7), a guanine nucleotide exchange factor for ARF1 and ARF6, induces neurite outgrowth and plays a key role in 5-hydroxyltryptamine-induced neurite growth and synaptic facilitation in Aplysia sensory-motor synapses. However, the specific role of ARF6 signaling on neurite outgrowth in Aplysia neurons has not been examined. In the present study, we cloned Aplysia ARF6 (ApARF6) and revealed that an overexpression of enhanced green fluorescent protein (EGFP)-fused constitutively active ApARF6 (ApARF6-Q67L-EGFP) could induce neurite outgrowth in Aplysia sensory neurons. Further, we observed that ApARF6-induced neurite outgrowth was inhibited by the co-expression of a Sec7 activity-deficient mutant of ApSec7 (ApSec7-E159K). The pleckstrin homology domain of ApSec7 may bind to active ApARF6 at the plasma membrane and prevent active ApARF6-induced functions, including intracellular vacuole formation in HEK293T cells. The results of the present study suggest that activation of ARF6 signaling could induce neurite outgrowth in Aplysia neurons and may be involved in downstream signaling of ApSec7-induced neurite outgrowth in Aplysia neurons.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Domínios de Homologia à Plecstrina/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Aplysia , Células HEK293 , Humanos , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Regulação para Cima
5.
J Neurosci ; 36(33): 8641-52, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535911

RESUMO

UNLABELLED: MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression in many tissues. Although a number of brain-enriched miRNAs have been identified, only a few specific miRNAs have been revealed as critical regulators of synaptic plasticity, learning, and memory. miR-9-5p/3p are brain-enriched miRNAs known to regulate development and their changes have been implicated in several neurological disorders, yet their role in mature neurons in mice is largely unknown. Here, we report that inhibition of miR-9-3p, but not miR-9-5p, impaired hippocampal long-term potentiation (LTP) without affecting basal synaptic transmission. Moreover, inhibition of miR-9-3p in the hippocampus resulted in learning and memory deficits. Furthermore, miR-9-3p inhibition increased the expression of the LTP-related genes Dmd and SAP97, the expression levels of which are negatively correlated with LTP. These results suggest that miR-9-3p-mediated gene regulation plays important roles in synaptic plasticity and hippocampus-dependent memory. SIGNIFICANCE STATEMENT: Despite the abundant expression of the brain-specific microRNA miR-9-5p/3p in both proliferating and postmitotic neurons, most functional studies have focused on their role in neuronal development. Here, we examined the role of miR-9-5p/3p in adult brain and found that miR-9-3p, but not miR-9-5p, has a critical role in hippocampal synaptic plasticity and memory. Moreover, we identified in vivo binding targets of miR-9-3p that are involved in the regulation of long-term potentiation. Our study provides the very first evidence for the critical role of miR-9-3p in synaptic plasticity and memory in the adult mouse.


Assuntos
Hipocampo/metabolismo , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Proteína 1 Homóloga a Discs-Large , Distrofina/metabolismo , Comportamento Exploratório/fisiologia , Medo/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanilato Quinases/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Plasticidade Neuronal/efeitos dos fármacos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Sinapsinas/genética , Sinapsinas/metabolismo , Transdução Genética
6.
Neurobiol Learn Mem ; 135: 50-56, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27321162

RESUMO

Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance. Here, we found that PKMζ is transported to the nucleus in a neural activity-dependent manner. Moreover, we found that PKMζ phosphorylates CREB-binding protein (CBP) at serine residues and that PKMζ inhibition reduces the acetylation of histone H2B and H3. Finally, we showed that the amnesic effect of PKMζ inhibition can be rescued by enhancing histone acetylation level. These results suggest the possibility that nuclear PKMζ has a crucial role in memory maintenance.


Assuntos
Amnésia/metabolismo , Tonsila do Cerebelo/metabolismo , Proteína de Ligação a CREB/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Amnésia/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Embrião de Mamíferos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Proteína Quinase C/antagonistas & inibidores
7.
Sci Rep ; 6: 22892, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961175

RESUMO

Cell-permeable proteins are emerging as unconventional regulators of signal transduction and providing a potential for therapeutic applications. However, only a few of them are identified and studied in detail. We identify a novel cell-permeable protein, mouse LLP homolog (mLLP), and uncover its roles in regulating neural development. We found that mLLP is strongly expressed in developing nervous system and that mLLP knockdown or overexpression during maturation of cultured neurons affected the neuronal growth and synaptic transmission. Interestingly, extracellular addition of mLLP protein enhanced dendritic arborization, demonstrating the non-cell-autonomous effect of mLLP. Moreover, mLLP interacts with CCCTC-binding factor (CTCF) as well as transcriptional machineries and modulates gene expression involved in neuronal growth. Together, these results illustrate the characteristics and roles of previously unknown cell-permeable protein mLLP in modulating neural development.


Assuntos
Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Animais , Fator de Ligação a CCCTC , Permeabilidade da Membrana Celular , Células Cultivadas , Dendritos/fisiologia , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/citologia , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transmissão Sináptica
8.
Mol Brain ; 8(1): 81, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631249

RESUMO

Neurons in the anterior cingulate cortex (ACC) are assumed to play important roles in the perception of nociceptive signals and the associated emotional responses. However, the neuronal types within the ACC that mediate these functions are poorly understood. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC and to assess their ability to modulate peripheral mechanical hypersensitivity in freely moving mice. We found that selective activation of pyramidal neurons rapidly and acutely reduced nociceptive thresholds and that this effect was occluded in animals made hypersensitive using Freund's Complete Adjuvant (CFA). Conversely, inhibition of ACC pyramidal neurons rapidly and acutely reduced hypersensitivity induced by CFA treatment. A similar analgesic effect was induced by activation of parvalbumin (PV) expressing interneurons, whereas activation of somatostatin (SOM) expressing interneurons had no effect on pain thresholds. Our results provide direct evidence of the pivotal role of ACC excitatory neurons, and their regulation by PV expressing interneurons, in nociception.


Assuntos
Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Inibição Neural , Neurônios/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dor Crônica/patologia , Dor Crônica/fisiopatologia , Adjuvante de Freund , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Inflamação/patologia , Integrases/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Optogenética , Limiar da Dor , Parvalbuminas/metabolismo , Rodopsina/metabolismo
9.
Science ; 350(6256): 82-7, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26430118

RESUMO

Memory stabilization after learning requires translational and transcriptional regulations in the brain, yet the temporal molecular changes that occur after learning have not been explored at the genomic scale. We used ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in the mouse hippocampus after contextual fear conditioning. We revealed three types of repressive regulations: translational suppression of ribosomal protein-coding genes in the hippocampus, learning-induced early translational repression of specific genes, and late persistent suppression of a subset of genes via inhibition of estrogen receptor 1 (ESR1/ERα) signaling. In behavioral analyses, overexpressing Nrsn1, one of the newly identified genes undergoing rapid translational repression, or activating ESR1 in the hippocampus impaired memory formation. Collectively, this study unveils the yet-unappreciated importance of gene repression mechanisms for memory formation.


Assuntos
Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Proteínas de Membrana/genética , Memória , Biossíntese de Proteínas/genética , Animais , Condicionamento Clássico , Medo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Ribossômicas/genética , Transcrição Gênica
10.
Mol Brain ; 8: 38, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104314

RESUMO

BACKGROUND: Guanine nucleotide exchange factors (GEFs) activate small GTPases that are involved in several cellular functions. cAMP-guanine nucleotide exchange factor II (cAMP-GEF II) acts as a target for cAMP independently of protein kinase A (PKA) and functions as a GEF for Rap1 and Rap2. Although cAMP-GEF II is expressed abundantly in several brain areas including the cortex, striatum, and hippocampus, its specific function and possible role in hippocampal synaptic plasticity and cognitive processes remain elusive. Here, we investigated how cAMP-GEF II affects synaptic function and animal behavior using cAMP-GEF II knockout mice. RESULTS: We found that deletion of cAMP-GEF II induced moderate decrease in long-term potentiation, although this decrease was not statistically significant. On the other hand, it produced a significant and clear impairment in NMDA receptor-dependent long-term depression at the Schaffer collateral-CA1 synapses of hippocampus, while microscopic morphology, basal synaptic transmission, and depotentiation were normal. Behavioral testing using the Morris water maze and automated IntelliCage system showed that cAMP-GEF II deficient mice had moderately reduced behavioral flexibility in spatial learning and memory. CONCLUSIONS: We concluded that cAMP-GEF II plays a key role in hippocampal functions including behavioral flexibility in reversal learning and in mechanisms underlying induction of long-term depression.


Assuntos
Comportamento Animal , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Animais , Encéfalo/metabolismo , Eletrochoque , Fatores de Troca do Nucleotídeo Guanina/deficiência , Aprendizagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
11.
Mol Brain ; 7: 78, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373491

RESUMO

Previous studies have shown that a family of phosphoinositide 3-kinases (PI3Ks) plays pivotal roles in the brain; in particular, we previously reported that knockout of the γ isoform of PI3K (PI3Kγ) in mice impaired synaptic plasticity and reduced behavioral flexibility. To further examine the role of PI3Kγ in synaptic plasticity and hippocampus-dependent behavioral tasks we overexpressed p110γ, the catalytic subunit of PI3Kγ, in the hippocampal CA1 region. We found that the overexpression of p110γ impairs NMDA receptor-dependent long-term depression (LTD) and hippocampus-dependent spatial learning in the Morris water maze (MWM) task. In contrast, long-term potentiation (LTP) and contextual fear memory were not affected by p110γ overexpression. These results, together with the previous knockout study, suggest that a critical level of PI3Kγ in the hippocampus is required for successful induction of LTD and normal learning.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Hipocampo/enzimologia , Plasticidade Neuronal , Aprendizagem Espacial , Animais , Ansiedade/fisiopatologia , Região CA1 Hipocampal/metabolismo , Células HEK293 , Hipocampo/fisiopatologia , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Atividade Motora , Receptores de N-Metil-D-Aspartato/metabolismo , Análise e Desempenho de Tarefas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Mol Cells ; 37(7): 511-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957213

RESUMO

MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may fine-tune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.


Assuntos
Memória , MicroRNAs/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Interferência de RNA , Animais , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Memória/fisiologia , Plasticidade Neuronal/genética
13.
BMB Rep ; 46(2): 103-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23433113

RESUMO

Phosphoinositide 3-kinases (PI3Ks) play key roles in synaptic plasticity and cognitive functions in the brain. We recently found that genetic deletion of PI3Kγ, the only known member of class IB PI3Ks, results in impaired N-methyl-D-aspartate receptor-dependent long-term depression (NMDAR-LTD) in the hippocampus. The activity of RalA, a small GTP-binding protein, increases following NMDAR-LTD inducing stimuli, and this increase in RalA activity is essential for inducing NMDAR-LTD. We found that RalA activity increased significantly in PI3Kγ knockout mice. Furthermore, NMDAR-LTD-inducing stimuli did not increase RalA activity in PI3Kγ knockout mice. These results suggest that constitutively increased RalA activity occludes further increases in RalA activity during induction of LTD, causing impaired NMDAR-LTD. We propose that PI3Kγ regulates the activity of RalA, which is one of the molecular mechanisms inducing NMDAR dependent LTD.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/genética , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Depressão/metabolismo , Depressão/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal
14.
J Neurophysiol ; 108(7): 1988-98, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22786952

RESUMO

Kainate (KA) receptors are expressed widely in the central nervous system and regulate both excitatory and inhibitory synaptic transmission. KA receptors play important roles in fear memory, anxiety, and pain. However, little is known about their function in synaptic transmission in the insular cortex (IC), a critical region for taste, memory, and pain. Using whole cell patch-clamp recordings, we have shown that KA receptors contribute to fast synaptic transmission in neurons in all layers of the IC. In the presence of the GABA(A) receptor antagonist picrotoxin, the NMDA receptor antagonist AP-5, and the selective AMPA receptor antagonist GYKI 53655, KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) were revealed. We found that KA EPSCs are ~5-10% of AMPA/KA EPSCs in all layers of the adult mouse IC. Similar results were found in adult rat IC. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulations at 200 Hz significantly facilitated the summation of KA EPSCs. In addition, genetic deletion of GluK1 or GluK2 subunit partially reduced postsynaptic KA EPSCs, and exposure of GluK2 knockout mice to the selective GluK1 antagonist UBP 302 could significantly reduce the KA EPSCs. These data suggest that both GluK1 and GluK2 play functional roles in the IC. Our study may provide the synaptic basis for the physiology and pathology of KA receptors in the IC-related functions.


Assuntos
Córtex Cerebral/fisiologia , Receptores de Ácido Caínico/fisiologia , Transmissão Sináptica , 2-Amino-5-fosfonovalerato/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Benzodiazepinas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Picrotoxina/farmacologia , Células Piramidais/fisiologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/genética , Timina/análogos & derivados , Timina/farmacologia , Receptor de GluK2 Cainato
15.
Neuron ; 73(2): 374-90, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22284190

RESUMO

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is involved in many cellular processes, including cell growth and differentiation, immune functions and cancer. It is activated by various cytokines, growth factors, and protein tyrosine kinases (PTKs) and regulates the transcription of many genes. Of the four JAK isoforms and seven STAT isoforms known, JAK2 and STAT3 are highly expressed in the brain where they are present in the postsynaptic density (PSD). Here, we demonstrate a new neuronal function for the JAK/STAT pathway. Using a variety of complementary approaches, we show that the JAK/STAT pathway plays an essential role in the induction of NMDA-receptor dependent long-term depression (NMDAR-LTD) in the hippocampus. Therefore, in addition to established roles in cytokine signaling, the JAK/STAT pathway is involved in synaptic plasticity in the brain.


Assuntos
Janus Quinases/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tirfostinas/farmacologia
16.
BMB Rep ; 44(12): 793-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22189682

RESUMO

Recently, pluripotency induction or cellular reprogramming by introducing critical transcription factors has been extensively studied, but has been demonstrated only in vitro. Based on reports that Oct4 is critically involved in transforming neural stem cells into pluripotent cells, we used the lentiviral vector to introduce the Oct4 gene into the hippocampal dentate gyrus (DG) of adult mice. We examined whether this manipulation led to cellular or behavioral changes, possibly through processes involving the transformation of NS cells into pluripotent cells. The Oct4 lentivirus-infused group and the green fluorescent protein lentivirus-infused group showed a similar thickness of the DG and a comparable level of synaptophysin expression in the DG. Furthermore, our behavioral analyses did not show any differences between the groups concerning exploratory activity, anxiety, or memory abilities. This first trial for pluripotency induction in vivo, despite negative results, provides implications and information for future studies on in vivo cellular reprogramming.


Assuntos
Comportamento Animal/fisiologia , Giro Denteado/anatomia & histologia , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Lentivirus/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Giro Denteado/virologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Nat Neurosci ; 14(11): 1447-54, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22019731

RESUMO

Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA receptor (NMDAR)-mediated synaptic plasticity at mouse Schaffer collateral-commissural synapses. Both genetic deletion and pharmacological inhibition of PI3Kγ disrupted NMDAR long-term depression (LTD) while leaving other forms of synaptic plasticity intact. Accompanying this physiological deficit, the impairment of NMDAR LTD by PI3Kγ blockade was specifically correlated with deficits in behavioral flexibility. These findings suggest that a specific PI3K isoform, PI3Kγ, is critical for NMDAR LTD and some forms of cognitive function. Thus, individual isoforms of PI3Ks may have distinct roles in different types of synaptic plasticity and may therefore influence various kinds of behavior.


Assuntos
Comportamento Animal/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Depressão Sináptica de Longo Prazo/genética , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Biofísica , Cromonas/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Estimulação Elétrica/métodos , Meio Ambiente , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/citologia , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosforilação/genética , Quinoxalinas/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinedionas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...