Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808808

RESUMO

A broad range of neuropsychiatric disorders are associated with alterations in macroscale brain circuitry and connectivity. Identifying consistent brain patterns underlying these disorders by means of structural and functional MRI has proven challenging, partly due to the vast number of tests required to examine the entire brain, which can lead to an increase in missed findings. In this study, we propose polyconnectomic score (PCS) as a metric designed to quantify the presence of disease-related brain connectivity signatures in connectomes. PCS summarizes evidence of brain patterns related to a phenotype across the entire landscape of brain connectivity into a subject-level score. We evaluated PCS across four brain disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 individuals. Our findings consistently show that patients exhibit significantly higher PCS compared to controls, with effect sizes that go beyond other single MRI metrics ([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate that PCS serves as a valuable tool for stratifying individuals, for example within the psychosis continuum, distinguishing patients with schizophrenia from their first-degree relatives (d = 0.42, p = 4 × 10-3, FDR-corrected), and first-degree relatives from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS is useful to uncover associations between brain connectivity patterns related to neuropsychiatric disorders and mental health, psychosocial factors, and body measurements.

2.
Environ Health Perspect ; 130(3): 37002, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238605

RESUMO

BACKGROUND: Mechanistic data is increasingly used in hazard identification of chemicals. However, the volume of data is large, challenging the efficient identification and clustering of relevant data. OBJECTIVES: We investigated whether evidence identification for hazard assessment can become more efficient and informed through an automated approach that combines machine reading of publications with network visualization tools. METHODS: We chose 13 chemicals that were evaluated by the International Agency for Research on Cancer (IARC) Monographs program incorporating the key characteristics of carcinogens (KCCs) approach. Using established literature search terms for KCCs, we retrieved and analyzed literature using Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA combines large-scale literature processing with pathway databases and extracts relationships between biomolecules, bioprocesses, and chemicals into statements (e.g., "benzene activates DNA damage"). These statements were subsequently assembled into networks and compared with the KCC evaluation by the IARC, to evaluate the informativeness of our approach. RESULTS: We found, in general, larger networks for those chemicals which the IARC has evaluated the evidence to be strong for KCC induction. Larger networks were not directly linked to publication count, given that we retrieved small networks for several chemicals with little support for KCC activation according to the IARC, despite the significant volume of literature for these specific chemicals. In addition, interpreting networks for genotoxicity and DNA repair showed concordance with the IARC KCC evaluation. DISCUSSION: Our method is an automated approach to condense mechanistic literature into searchable and interpretable networks based on an a priori ontology. The approach is no replacement of expert evaluation but, instead, provides an informed structure for experts to quickly identify which statements are made in which papers and how these could connect. We focused on the KCCs because these are supported by well-described search terms. The method needs to be tested in other frameworks as well to demonstrate its generalizability. https://doi.org/10.1289/EHP9112.


Assuntos
Carcinógenos , Neoplasias , Benzeno , Carcinógenos/toxicidade , Bases de Dados Factuais , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...